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1. EXECUTIVE SUMMARY

1 Executive Summary

1.1 Abstract

While RISC-V has enjoyed both strong functional simulation support via ISA simulators such
as QEMU (2) and Spike (3) and RTL simulation support via Chisel and other HDL simulators
(4), it has little support in the realm of full system-level simulators, especially for simulation of
Linux-capable systems. This presents a bottleneck in the RISC-V hardware development process
because it is difficult to quickly and reliably prototype and verify the performance of hardware
designs for complex high-level applications, such as deep learning. To resolve this bottleneck,
we present in this technical manual, gem5-eXtensions for RISC-V, or : a functioning
Linux-capable full system simulator built into the gem5 system-level architectural simulator and
gem5-X (5)(6). We extend prior work by implementing the RISC-V privileged specification in gem5
(7). Our contributions include implementing privileged specification instructions and control and
state registers (CSRs), support for user and supervisor privilege modes, a RISC-V compliant MMU
capable of processing virtual memory, and ISA devices and interrupters, in addition to creating and
configuring a gem5-compatible bootloader, device tree, Linux kernel, and disk image file system.
With the privileged specification implemented and external components configured, we are able
to demonstrate functionally correct execution of basic programs and benchmarks fetched from the
disk image and executed on top of the Linux kernel.

1.2 Release Information

Version Date Changes
v1.0 June 2020 Initial release.

1.3 Collaboration and Contact Information

The maintainers of this project can be contacted via email at {joshua.klein, yasir.qureshi,
david.atienza}@epfl.ch and marina.zapater@heig-vd.ch.

Because the scope of this project is very large, we are always interested in potential collabora-
tion efforts to develop new features and bring to gem5 master. For inquiries, source
code, and additional information, please contact one of the aforementioned emails.

1.4 Licenses

is released under the GNU GPL v2.0 license. Please refer to the LICENSE file in
the main repository for more details.
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2. INTRODUCTION

2 Introduction

2.1 Motivation

Due to its status as an open-source and free instruction set, the RISC-V ISA has long been
a popular candidate for implementing new hardware systems-on-chip (SoCs) and accelerators by
striving to be the Linux of hardware (1). Even though it was only introduced in 2014, the open-
source nature of RISC-V has led to varying levels of support across the computer architecture
stack. Towards the software end, there are multiple Linux ports for various distributions (11) (12),
as well as Linux kernel support upstream made possible by the RISC-V GNU toolchain (13). The
hardware end is more limited however: there are multiple different kinds of simulators currently
available for RISC-V and each represents a significant trade-off.

On one end of the spectrum, there are RTL simulators that typically interpret hardware descrip-
tion languages (HDLs) like Chisel and Verilog. They can provide extremely accurate simulations
of hardware interactions, leading to precise performance results with respect to speed, latencies,
bandwidth, power, and energy. However, even on the most powerful machines, RTL simulators can
take on the order of weeks or even months to run and generate statistics for high-level, complex
applications. This can significantly increase the time-to-market of a hardware product.

On the other end of the spectrum, there are functional ISA simulators such as QEMU (2)
and spike (3) for RISC-V. These simulators only model the execution of instructions to verify the
functional results of a program. While it is not possible to attain precise performance results of the
underlying hardware with these simulators, one can very quickly load and run a program on top of
an operating system using these simulators. What may take on the order of weeks or months in
an RTL simulator can easily run on a functional simulator in minutes.

The middle ground between RTL and functional simulators, and the focus of this work, are
system-level simulators. While not as fast to load and run programs as functional simulators,
system-level simulators can represent major hardware components and interconnects as high-
level software models with timing information, leading to the attainment of functionally accurate
results as well as reasonable hardware performance statistics in significantly less time than RTL
simulators. With extensions such as McPat, power and energy data can also be asserted by the
generated performance statistics (14). While not being able to boast the same level of precision
offered by RTL simulators, the end result is the ability to rapidly prototype and redesign hardware
with reasonable insight into performance ramifications, thus decreasing the time to market of a
hardware product.

Unfortunately, the premier system-level simulator in academia, gem5 (5), only has limited sup-
port for RISC-V. Prior work has implemented the unprivileged instruction set (15) as well as limited
bare metal full system support for RISC-V (10). The RISC-V privileged ISA specification has not
been implemented in gem5 however, and so it is impossible to leverage the benefits of this system-
level simulator for complex applications running on top of a Linux system. Therefore the goal of

is to implement a Linux-capable full system simulator to allow for rapid design-space
exploration of new system architectures for RISC-V.

2.2 Background

In this section we introduce the basic terms and ideas of the RISC-V instruction set, compare
the unprivileged and privileged specifications, describe the target RISC-V execution stack, and
introduce gem5 and gem5-X.
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2. INTRODUCTION

2.2.1 The RISC-V Instruction Set Architecture

Introduced in 2014, RISC-V is a free and open-source ISA that is built to have a minimalist
base instruction set that is highly extensible and can still meet the demands of modern computer
systems. The ISA comes in 32-bit, 64-bit, and 128-bit formats, which are denoted as RV32, RV64,
and RV128, respectively, and all instructions are 32-bit (with the exception of shorter instructions
introduced with the compressed ISA extension). The specification is split into multiple documents,
including the base unprivileged specification, privileged specification, external debug specification,
trace specification, and compliance framework (1) (9).

In order for a RISC-V system to run programs on top of the Linux kernel, it needs to, at min-
imum, implement the G (general purpose) and C (compressed) extensions from the unprivileged
ISA specification, as well as the privileged ISA specification, which are explained below with re-
spect to this work.

2.2.2 The RISC-V Unprivileged ISA Specification

The RISC-V unprivileged specification (in revision v2.1 as of writing this manual) specifies the
existence, operation, formats, and bit codes for the base instruction set as well as numerous exten-
sions. In addition to instruction listings, the unprivileged ISA also includes directives for interrupt
subroutines (exceptions, traps, and interrupts), counters, and registers, as well as definitions for
numerous RISC-V terms including different execution environments (EEs) and hardware threads
(harts).

A Linux-capable RISC-V system with the G and C extensions is referred to as a RV32GC,
RV64GC, or RV128GC system depending on the word size. The compressed extension defines
16-bit instruction layouts and the general purpose extension is a composite extension comprised
of the IMAFDZicsrZifencei extensions, outlined in table 1.

Extension Version Description
RV32I 2.1 Base 32-bit integer extension.
RV64I 2.1 Base 64-bit integer extension.

M 2.0 Multiply/divide extension.
A 2.1 Atomic operations extension.
F 2.2 Single-precision floating point extension.
D 2.2 Double-precision floating point extension.
C 2.0 Compressed instruction formats extension.

Zicsr 2.0 CSR interface instructions extension.
Zifencei 2.0 Instruction-fetch fence instruction extension.

Table 1: RISC-V Unprivileged Specification GC extension versions as of writing this manual. All
extensions presented above are ratified.

2.2.3 The RISC-V Privileged ISA Specification

The RISC-V privileged specification (in revision 1.11 as of writing this manual) specifies dif-
ferent privilege modes of operation (user, supervisor, hypervisor, and machine), and it is split into
Supervisor-Level and Machine-Level ISAs (7).
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2. INTRODUCTION

The Machine-Level ISA contains the definitions and layouts of real CSRs and the privileged
specification instructions accessible in M-mode (machine mode), as well as a description of physi-
cal memory protection and attributes (PMP/PMAs). The CSRs, unlike normal argument and tem-
porary registers housed in a CPU’s register file, may be memory-mapped and contain a lot of
specific information pertaining to a variety of system functions, including the current status of the
system, interrupt information, system information, and counters. The new instructions introduced
in thee Machine-Level ISA include environment call and breakpoint instructions, trap-return instruc-
tions, and a wait for interrupt instruction.

The Supervisor-Level ISA contains the definition and layouts of supervisor CSRs, most of which
shadow the existing Machine-Level ISA CSRs. It also introduces a supervisor fence instruction,
virtual memory management, and a paging algorithm.

2.2.4 Introduction to gem5 and gem5-X

Introduced initially in 2011, gem5 is a modular computer architecture simulator that, unlike RTL
simulators, enables system-level design space exploration by simulating high-level event-driven
software models for processors, peripheral devices, and memory. It comes with numerous CPU,
RAM, and device models right out of the box and includes varying levels of support for numerous
ISAs including x86, ARM, and RISC-V.

gem5’s primary running modes are Syscall Emulation (SE) and Full System (FS). SE mode
enables program simulation with simple, emulated interrupt and syscall handling. FS mode on the
other hand enables program simulation on top of a full system stack, including memory hierarchy,
operating system, disk image, and full interrupt service routines by in interrupt controllers (5).

gem5-X, published in April 2019 by the Embedded Systems Laboratory at EPFL, extends gem5
by introducing architectural extensions such as in-cache computing and 3D-stacked HBM models,
as well as a methodology for optimizing the power and performance of many-core systems (6). It
also implements several enhancements in gem5, listed below:

• ARM-64 Full System support by way of an Ubuntu 16.04 LTS disk image with kernel v4.3.

• Profiling capabilities within the simulation using the gperf profiler.

• Enhanced checkpointing by way of Region-Of-Interest (ROI) marking in applications.

• 9P over Virtio for fast modification of files without modifying the root file system, enabled by
default and built into the kernel.

2.3 Prior Work

Varying levels of support for RISC-V have been introduced to the main gem5 repository over
the years, but unfortunately there has been no full published effort bringing Linux-capable FS mode
systems for RISC-V in gem5.

The first published effort bringing RISC-V to gem5 was published in CARRV (workshop on
Computer Architecture Research with RISC-V) 2017 by Alec Roelke and Mircea R. Stan (15). In
their work, ”RISC5: Implementing the RISC-V ISA in gem5”, they implemented RISC-V unprivi-
leged GC extensions and verified their results against a single-core system running in gem5 SE
mode. This was extended by Tuan Ta, Lin Cheng, and Christopher Batten at CARRV 2018 with
their work, ”Simulating Multi-Core RISC-V Systems in gem5”, which brought multi-core SE mode
simulation to gem5 (16).
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2. INTRODUCTION

The work closest to bringing Linux-capable FS mode to gem5 for RISC-V systems is a Mas-
ter’s Thesis written by Robert Scheffel of Technische Universität Dresden (TUD) (10). In this work,
Scheffel implemented a RISC-V bare-metal-capable FS mode system in gem5. In this case, Schef-
fel could run binaries stored on a simulated flash device loaded in RAM without an operating sys-
tem or MMU. This required implementing interrupts and exceptions, in addition to a few peripheral
devices implicitly required by the RISC-V ISA.

Finally, Nils Asmussen of the Barkhausen Institut contributed a RISC-V Sv39 MMU to the main
gem5 repository for use with microkernels (24). This MMU is model is based off of the x86 MMU
model in gem5 but does not support Linux.

2.4 Contributions

The base target execution environment for this work is a combination software and hardware
execution environment with both an application binary interface (ABI) and supervisor binary inter-
face (SBI). In other words, our main contribution with gem5-eXtensions for RISC-V is creating
the first Linux-capable FS mode system in gem5. The work leading up to this is as follows:

1. We extend the FS mode configuration in gem5 for Linux-capable RISC-V systems.

2. We implement instructions from the RISC-V privileged specification and extend or verify in-
structions implemented in prior work.

3. We implement the missing Zifencei extension from the unprivileged specification.

4. We extend CSR implementations from prior work.

5. We develop a RISC-V compliant MMU capable of processing virtual memory, checking PM-
P/PMA, and interfacing a page table walker.

6. We implement RISC-V ISA devices, including a PLIC (platform-level interrupt controller) and
CLINT (core-local interrupter).

7. We develop and configure a gem5-compatible bootloader, Linux kernel, device tree, and
buildroot image for storage.

With these contributions combined, we are able to demonstrate running programs on top of the
Linux kernel, on top of a disk image. In the next section we discuss and describe how to set up
and use . In the rest of this technical manual we detail the high-level implementation
of our contributions.
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3. RUNNING GEM5 FULL SYSTEM MODE WITH RISC-V AND LINUX

3 Running gem5 Full System Mode with RISC-V and Linux

In this chapter we describe how we configured and ran our RISC-V model, ending with a quick-
start guide.

3.1 Necessary Files

Because our model is run in FS mode with a full Linux environment, we need several major
system components not included with gem5. This includes,

• A bootloader

• A static kernel binary, e.g., vmlinux

• A file system/disk image

• A device tree binary

Additionally, all of the aforementioned components must be compatible with the RV64GC flavor
of ISA.

All of the configuration files are located under system/riscv/ in the bootloader, disk, dt, and
linux folders. In the following sections we describe the configuration options and how to use them
in brief. Our steps for building each of the components follow from each respective component’s
own quick-start guide and it is assumed you have followed their guide and set up their respective
environments. Once you have all of the files configured, it is possible to test them using the RISC-V
variant of soft-mmu QEMU (2). Note that a common dependency is the RISC-V GNU toolchain,
which includes a cross-compiler necessary for compiling the bootloader and kernel.

Additionally, you should also set up gem5 full system mode by creating the folders src/
full system images/disks and src/full system images/binaries to house your additional files. These
folders should sit on your M5 path after you set up gem5, which can be done with the following:

1 expor t M5 PATH=/ path / to / gXR5 / f u l l \ system\ images

3.1.1 Device Tree

Our device tree is custom built, initially modified from a device tree generated by QEMU for a
Fedora Linux emulation (2) (11). Once you have the device tree compiler set up, you can compile
the device tree structure (dts) file using the following:

1 dtc − I d ts −O dtb gem5−simple−rv64 . d ts −o gem5−simple−rv64 . dtb

The output of this command is a device tree binary (dtb) file that can then be used by copying
it to your FS mode directory, under full system images/binaries.

3.1.2 Bootloader

The bootloader we used for testing is the Open Supervisor Binary Interface, or OpenSBI.
OpenSBI is a first-stage bootloader and platform-independent M-mode firmware designed to link
a library with a simple set of defined methods for a specific platform. The RISC-V manual also
includes a SBI specification that OpenSBI conforms to (9) (17).
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3. RUNNING GEM5 FULL SYSTEM MODE WITH RISC-V AND LINUX

For our experiments, we tested the OpenSBI bootloader compiled for the qemu/virt platform
using a custom configuration file. Copy the configs.mk, objects.mk, and platform.c files to the
qemu/virt directory in your OpenSBI folder. After this, you can run the following commands to build
the bootloader:

1 g i t c lone h t t ps : / / g i thub . com/ r i s c v / opensbi . g i t
2 cd . / opensbi
3 g i t checkout 813f7f4c250af9f7c9546f64778e9b35bb7d7dcb
4 expor t CROSS COMPILE=/ path / to / r i s c v / compi ler / here
5 expor t PLATFORM RISCV XLEN=64
6 make PLATFORM=qemu / v i r t O=/ path / to / your / b u i l d / d i r e c t o r y
7 make PLATFORM=qemu / v i r t I = / path / to / your / i n s t a l l / d i r e c t o r y

The result of these commands, if run successfully, should include a file ”fw jump.elf”. This can
be used as a standalone bootloader which launches a vmlinux file during run-time. To install for

, copy the file to full system images/binaries.

3.1.3 Linux Kernel

Under most circumstances, gem5 is only able to directly run static binaries, and thus we must
use a static version of the Linux kernel. This refers specifically to the file generated by building the
Linux kernel, vmlinux.

For our tests, we built and used Linux kernel version 5.5 directly from the Linux repository (18).
You will need to git checkout this version and then rebuild Linux with our custom configuration file.
Copy one of the provided Linux configuration files into your Linux directory as the file ”.config”. You
can run the following:

1 g i t c lone h t t ps : / / g i thub . com/ t o r v a l d s / l i n u x . g i t
2 cd . / l i n u x
3 g i t checkout v5 .5
4 make ARCH= r i s c v CROSS COMPILE=/ path / to / r i s c v / compi ler / here
5 make ARCH= r i s c v CROSS COMPILE=/ path / to / r i s c v / compi ler / here a l l

The result of running these commands should be both a vmlinux and Image file containing a
RV64GC-compatible kernel. Though the Image file is not used in gem5, you can use it in QEMU
to verify a successful RISC-V build in lieu of the vmlinux file.

Like before, in order to use your vmlinux file you will need to copy over to your
directory under full system images/binaries.

3.1.4 Disk Image

The disk image we used is a minimal rootfs created by buildroot (19). Similarly with building
Linux, in order to build the root file system you will need to copy over the configuration file and
make. Note that if you previously did not set up buildroot with RISC-V, buildroot will need
to download and set up the entire RISC-V GNU toolchain, so your first time creating the
minimal rootfs will likely take tens of minutes (if not longer) depending on your computer and
internet connection.

So just like with Linux, you will need to copy the provided buildroot.config file into the .config
file of the buildroot directory. By default, the rootfs file will be a 60MB image with only the min-
imal root file system. The username and password are set to root/buildroot by default, but this
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can be changed in the nconfig menu for buildroot, or for auto-login, in /etc/inittab of the gener-
ated rootfs.ext2. Note that the rootfs file is technically marked as an ext4 file system, but what
is generated is an ext2 file system with an ext4 link. Linux will still treat this file system as ext4
however.

So after you have completed configuration of your rootfs file, you are ready to build it. Simply
call ”make” in the buildroot directory and the disk image, rootfs.ext2, will be available in output/im-
ages. In order to use it, copy it over to your directory under full system images/disks.

Lastly, just like with the Image file in Linux, you can use this rootfs file with RISC-V QEMU to
verify its contents. Because it is a miniaml root file system however, it will not have the proper
utilities for creating test programs, so simply mount it and copy over files from your host system
using the following:

1 sudo mount <p a t h t o r o o t f s >/ r o o t f s . ext2 / path / to / mount / po i n t
2 cp / your / b ina ry / path / to / mount / po i n t
3 sudo umount / path / to / mount / po i n t

3.2 Recommended Script Options

In addition to the files included above, we tested our model using the AtomicSimpleCPU model,
2GB of RAM, and the DDR3 2133 8x8 memory type. Future work will include testing and verifica-
tion of other CPU models with respect to real hardware.

3.3 Quick-Start Guide

In this brief start-up guide, we will guide you through the basic steps to running your first ex-
periment with gXR5. This guide assumes you have already built a working bootloader, device tree,
static kernel file, and disk image using the aforementioned configuration files as described in the
previous sections and placed them in the proper file locations: gem5-simple-rv64.dtb, fw jump.elf,
and vmlinux in gXR5/full system images/binaries and rootfs.ext2 in gXR5/full system images/
disks.

3.3.1 Prerequisites

You will need to set up the gem5 environment in order to compile and run the gem5 binary
using the scons (SConstruct) builder. If running on an Ubuntu-based host system, you can use the
following command to get all the required libraries:

1 sudo apt i n s t a l l bu i l d−e s s e n t i a l g i t m4 scons z l i b 1 g \
2 z l ib1g−dev l i b p r o t o b u f−dev protobuf−compi ler l i b p r o t o c−dev \
3 l ibgoog le−p e r f t o o l s−dev python−dev python−s i x python \
4 l i bboos t−a l l−dev

3.3.2 Building the gem5 Binary

Once the above is done, you will need to build a RISC-V gem5 binary. You can create multiple
builds including .fast, .opt, and .debug. If you are only concerned about running experiments, it
is recommended to only create gem5.fast. However, if you need to debug anything or want to
generate traces, you will need to build gem5.opt or gem5.debug. Do this with the following:
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1 cd gXR5
2 scons b u i l d / RISCV / gem5.{ f as t , opt , debug}

Additionally, if you would like to speed up the compilation process, you can use the option ”-jN”
on the scons build line where N is the number of threads you want to assign for compilation.

3.3.3 Setting Up Your Experiment

Before you start running gem5, you will need to set up the rootfs image to run your desired
program. Copy over your desired program to the rootfs, and then modify the /etc/inittab in your
rootfs to include the program you want to run. The inittab is responsible for initializing various file
systems and the login screen but simple programs should be safe to run this way because the
kernel has already entirely booted by the time inittab is run.

For example, if you want to run a cross-compiled binary called ”rvhello” sitting in my file system’s
bin folder, you would run the following:

1 r iscv64−l i nux−gnu−gcc r v h e l l o . c −o r v h e l l o
2 mkdir / mnt
3 sudo mount gXR5 / f u l l \ system\ images / d isks / r o o t f s . ext2 / mnt
4 sudo cp r v h e l l o / mnt / b in
5 sudo v i / mnt / e tc / i n i t t a b
6 sudo umount / mnt

When you run ”sudo vi” in the above, you will modify the inittab to have the following:

1 # / e tc / i n i t t a b
2 #
3 # Copyr ight (C) 2001 Er i k Andersen <andersen@codepoet . org>
4
5 . . .
6
7 # Run your b inary
8 : : s y s i n i t : / b in / r v h e l l o
9

10 . . .

Exit vi with escape + ”:wq” + enter, and then you can unmount your file system and you are
ready to run your experiment.

3.3.4 Running Your Experiment

Once your program sits in your rootfs and your inittab file is modified appropriately, run
using a script that has some variation of the following:

1 cd gXR5
2 . / b u i l d / RISCV / gem5.{ f as t , opt , debug} \
3 −d / path / to / your / ou tput / d i r e c t o r y \
4 . / con f igs / example / f s . py \
5 −−disk−image= fu l l sys tem images / d isks / r o o t f s . ext2 \
6 −−kerne l= fu l l sys tem images / b i n a r i e s / vml inux \
7 −−os−type= l i n u x \
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8 −−dtb−f i lename= fu l l sys tem images / b i n a r i e s / gem5−simple−rv64 . dtb \
9 −−cpu−type=AtomicSimpleCPU \

10 −n 1 \
11 −−mem−s ize =8GB \
12 −−mem−type=DDR3 2133 8x8 \
13 −−cpu−c lock =1GHz \

At this point you should be able to connect to your running gem5 instance in another shell with,

1 t e l n e t l o c a l h o s t 3456

Upon connecting to your gem5 instance, you should be able to see the OpenSBI logo as well as
the kernel dmesg, followed by whatever output is apart of the program you are running (including
basic ”Hello, world!” programs and other benchmarks).
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4 Full System Configuration Overview

The goal with this first revision of a RISC-V FS mode-compatible model was to create the sim-
plest possible computer system for running basic benchmarks that still aligns with performance and
power models of real RISC-V processors. In this chapter we describe the FS mode configuration
in detail, and, in brief, our platform.

4.1 Full System Model and Child Tree

Figure 1: RISC-V Full System configuration with all models used for simulation and their inter-
faces. The diagram on the left An arrow from object A pointing to object B indicates that A sets its
associated port to B within the gem5 configuration script.

The RISC-V Full System model consists of numerous built-in gem5 models as well as custom
ISA-specific models. As shown in figure 1, the model includes a single-core CPU with instruction
and data caches, TLB walkers for each of the aforementioned caches, a (currently unused) boot-
mem, a Platform-Level Interrupt Controller (PLIC), a Core-Local Interrupter (CLINT), a PCI host
with IDE controller, and lastly a UART module. All models are connected to either a memory bus
(membus) or IO bus (iobus), and these buses are interfaced through both a system bridge and
IO bridge. Of these models mentioned, only the PLIC and CLINT are RISC-V-specific models re-
quired by the ISA. Additionally, the PCI host is customized for our implementation. The rest of the
models are ISA-independent and are provided by gem5’s built-in utilities.

Figure 2: RISC-V Full System gem5 child tree.
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The child tree is shown in figure 2 and shows the gem5 model hierarchy of the simulated
system.

The full system configuration is implemented in configs/example/fs.py and configs/common/
FSConfig.py. fs.py contains the general FS-mode setup while FSConfig.py contains the specific
RISC-V system setup, including mapping memory and making all port connections.

4.2 Full System Memory Map

The full system memory map can be seen in table 2. It is defined in configs/example/fs.py and
src/dev/riscv/SimpleBoard.py.

Device Address Range
PLIC 0x0c000000:0x0c2fffff
UART 0x10000000:0x10000100
CLINT 0x20000000:0x2effffff
PCI 0x2f000000:0x5fffffff
RAM 0x80000000:0xffffffff
– bootloader 0x80000000:0x801fffff
– kernel 0x80200000:0x87ffffff
– device tree 0x88000000:0x8fffffff

Table 2: Rough memory map of simulated full system.

For a precise listing of all CSRs are their offsets, please refer to the ISA specification (7) (8).

4.3 SimpleBoard Platform

To interface ISA-specific devices as well as external devices, we further develop the Simple-
Board platform that was initially introduced in Scheffel’s thesis (10). The relation between the CPU
core and SimpleBoard SoC, as well as external devices, can be seen in figure 3.

Figure 3: Target hardware system for emulation.

In order to enable gem5 FS mode, models for both a CLINT and PLIC needed to be developed
and interfaced through the SimpleBoard platform. Additionally, a platform in gem5 is used to also
interface certain external interrupts such as interrupts from PCI devices as well as implement
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timers, connect a terminal, etc. All code for the SimpleBoard platform and associated devices can
be found in src/dev/riscv.
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5 Implementation of Privileged RISC-V ISA Specification

In this section we go into more detail about how the privileged ISA specification was imple-
mented in , including the CSRs, instructions, interrupt handling, and virtual memory
subsystems.

5.1 Control and State Registers (CSRs)

In this section, we discuss CSRs in RISC-V and their implementation in gem5.

5.1.1 CSRs versus Other Registers

The RISC-V ISA specification implicitly designates two kinds of registers: the aforementioned
Control and State Registers and what this manual will refer to as ’normal’ CPU registers. The nor-
mal registers include the common registers seen across many ISAs, including argument registers,
temporary registers, stack pointer, program counter, etc. CSRs however contain very specific in-
formation with respect to the operation of RISC-V systems. Furthermore, CSRs don’t have to be in
the register file of the CPU and can instead be memory-mapped to help interface external devices.
Keep in mind however that a CPU will still see and access memory-mapped CSRs as though they
were in the register file.

Some of the most important CSRs include mstatus, which contains information about the cur-
rent running status of the system, mip and mie, which show the pending and enabled interrupts in
the system, and mtime, which is used as a global system timer. The full CSR listings can be found
in the RISC-V privileged specification (7).

CSR names that start with ’m’ refer to a CSR only accessible in machine (M) mode. The RISC-
V privileged specification also lists supervisor (S) mode CSRs, most of which are not actually CSRs
separate from their M-mode counterparts but are shadows of the same M-mode CSRs where M-
mode-only bits cannot be reliably read or written from. There are some CSRs completely unique
to S-mode however, such as the satp CSR.

5.1.2 CSRs in gem5-X

The register file for RISC-V is located in src/arch/riscv/registers.hh. This file defines the maps
that contain both the normal register file registers as well as the CSRs. It is in this file that CSR
indices, names, and offsets are stored and referenced in gem5. Additionally, the registers.hh file
defines BitUnions for easy access to the different fields of the CSRs. Most of these CSRs were
previously defined in prior work, and only some performance and timing registers needed to be
added for .

5.1.3 Interfacing and Accessing CSRs

As the register file is usually unique for each hart, the usual way to interface the CSRs is via the
threadContext class using the methods getMiscReg and setMiscReg. These methods are defined
and implemented for RISC-V in src/arch/riscv/isa.hh and src/arch/riscv.isa.cc, respectively.

Hardware events usually call the ISA methods when a CSR needs to be checked or modified.
For example, a CPU read to the mtime CSR must read the external system clock, and therefore
the ISA interface will access the system’s CLINT to read that CSR. Another example is when an
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external interrupt needs to be posted by the PLIC, it will update the mip CSR through the ISA
interface.

Note that with memory-mapped CSRs, the ISA interface only defines direct access to the reg-
ister. Usually when a CSR must be accessed directly by address, it is through gem5’s packet
interface (typically associated with PIO devices), and so another interface is defined to connect ex-
ternal devices and the ISA interface in src/arch/riscv/isa device.hh (and subsequently implemented
in src/arch/riscv/isa device.cc).

5.2 RISC-V Instructions

In this section, we discuss the new instruction implementations in RISC-V and gem5.

5.2.1 Instructions in gem5

gem5 implements instructions by using ISA template files that then generate all of the instruc-
tion classes and functionality during the SConstruct build process. The ISA templates for RISC-V
are located in src/arch/riscv/isa/. The primary file used for implementing individual instruction
functions is src/arch/riscv/isa/decoder.isa, which decodes machine code to assign and process
instruction types. Most of the RV64GC instructions from the unprivileged ISA specification were
implemented in prior work.

5.2.2 Privileged Specification Instructions

The privileged RISC-V spec adds very few instructions to the base ISA. These instructions are
URET, SRET, MRET, SFENCE.VMA, WFI, HFENCE.BVMA, and HFENCE.GVMA. As of writing
this manual, the Hypervisor specification has not yet been ratified, so we forego the implemen-
tation of the HFENCE instructions. The table of instruction layouts (Table 5.1 in the unprivileged
specification document) is recreated in table 3 for convenience.

00000000 00010 00000 000 00000 1110011 URET
00010000 00010 00000 000 00000 1110011 SRET
00110000 00010 00000 000 00000 1110011 MRET
00010000 00101 00000 000 00000 1110011 WFI
00000000 rs2 rs1 000 00000 1110011 SFENCE.VMA
00000000 rs2 rs1 000 00000 1110011 HFENCE.BVMA
00000000 rs2 rs1 000 00000 1110011 HFENCE.GVMA

Table 3: Instructions introduced in the RISC-V Privileged ISA specification and their bit layouts.

The URET, SRET, and MRET instructions are all trap return instructions for specific privilege
modes. These instructions were initially implemented in prior work and only verified for use with
Linux-capable FS mode in this work.

The WFI instruction is a ”wait for interrupt” instruction. The RISC-V privileged specification
states that a no-operation (NOP) is a valid implementation for WFI, so we left the instruction as
such.

The SFENCE.VMA instruction is a supervisor fence that is used to enforce memory order-
ing. While the RISC-V privileged specification goes into very tedious and specific detail about
memory ordering and constraints, the result of the specification’s discussion is a relatively simple
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hardware cache flush, implemented in gem5 using the overridden demapPage method found in
src/arch/riscv/tlb.cc. A call to SFENCE.VMA will flush a specific page or set of pages of the L1 ITB
and DTB caches by address space number (ASN), virtual address, both, or neither (resulting in a
full cache flush) depending on the values of its arguments rs1 and rs2.

5.2.3 Unprivileged Specification Instructions

Only two instructions necessary for Linux-capable FS mode were missing from prior work. The
instructions and their layouts are in tables 4 and 5.

fm pred succ rs1 000 rd 0001111 FENCE

Table 4: Missing fence instruction from the RV32/64 Base Instruction Set.

imm[11:0] rs1 001 rd 0001111 FENCE.I

Table 5: Missing fence instruction from the RV32/RV64 Zifencei Standard Extension.

The FENCE instruction is simply implemented as a flush instruction for the entire L1 instruction
and data caches (ITB and DTB). The FENCE.I instruction is specifically for L1 ITBs, so only the
ITB is flushed. The cache flush implementation in gem5 is the same as described in the previous
section for the SFENCE.VMA instruction.

5.3 Fault Handling

In this section, we discuss faults, exceptions, and interrupts in RISC-V and their implementation
in gem5.

5.3.1 RISC-V Terminology

The RISC-V ISA specification defines numerous terms relating to trap/faults. A synchronous
fault is referred to as an exception, while an asynchronous fault is referred to as an interrupt.

Exceptions include faults due to misaligned instructions/addresses, invalid instruction/address
access, illegal instruction calls, breakpoints, environment calls, and page faults. Interrupts include
software, timer, and external asynchronous faults in different privilege modes.

The fault number of an exception or interrupt is stored in the cause CSR, which holds fault
causes in a one-hot representation and reserves its top bit to indicate if the fault is an interrupt or
an exception.

5.3.2 RISC-V Fault Handling Algorithm

Because RISC-V relies on its various binary interfaces for fault handling, a lot of the algorithm
for handling various faults is delegated to software. This makes the implementation of fault handling
in hardware extremely easy. The RISC-V hardware simply saves the current context (privilege
mode, current PC value), escalates the privilege mode (unless delegated via the mideleg and
medeleg CSRs), and sets the PC to the saved address of the fault handler. The cause value
stored in the m/s/ucause CSR will tell the software fault handler which specific routine needs to be
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taken. When the fault is handled, it calls the m/s/uret instruction to restore context and continue
program execution.

5.3.3 Exceptions in gem5

Prior work had defined and implemented RISC-V exceptions in src/arch/riscv/faults.hh and sr-
c/arch/riscv/faults.cc, respectively. All fault types derive from a base RiscvFault class and most
faults will use the same invoke method which implements the fault handling described in the previ-
ous section. The derived fault classes are mostly for implementation simplicity, but in this work we
also had to ensure privilege modes were implemented for the ecall fault type.

Address, misalignment, instruction, and page faults of all types are typically posted by the TLB,
defined in src/arch/riscv/tlb.cc.

5.3.4 Interrupts in gem5

Interrupts in RISC-V use the same fault handling algorithm as exceptions with some minor
changes based on the fault code and cause CSR, and therefore use the same aforementioned
fault handler defined for exceptions in gem5. To use the same fault handler, prior work had already
defined and implemented an InterruptFault class in src/arch/riscv/faults.hh and src/arch/riscv/-
faults.cc, respectively.

Interrupts are posted from different (usually external) sources at asynchronous times. gem5
offers a CPU interface with postInt and clearIInt methods that set and clear an interrupt pending
array defined in src/arch/riscv/interrupts.hh.

5.4 Virtual Memory

38 30 29 21 20 12 11 0

VPN[2] VPN[1] VPN[0] Page Offset

Figure 4: Sv39 virtual address.

53 28 27 19 18 10 9 8 7 6 5 4 3 2 1 0

PPN[2] PPN[1] PPN[0] RSW D A G U X W R V

Figure 5: Sv39 page table entry.

55 30 29 21 20 12 11 0

PPN[2] PPN[1] PPN[0] Page Offset

Figure 6: Sv39 physical address.

The satp (supervisor address translation and protection) CSR is responsible for determining
the status of virtual memory. It contains three fields: the mode of translation, the address space
identifier (ASID), and finally the physical page number of the root page table. When the mode is
set to bare or the privilege mode is in M-mode, address translation is direct and all addresses are
considered ”physical”. When the mode field is not bare, there are four modes of virtual address
translation available.
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In , we support only Sv39 virtual address translation. This is 39-bit virtual address-
ing that translates a 39-bit virtual address to a 56-bit physical address. The bit formats for Sv39
virtual address, page table entries, and physical addresses, are found in figures 4, 5, and 6. Virtual
address translation is mostly implemented in src/arch/riscv/tlb.cc, and is discussed in more detail
in the next chapter.
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6 Virtual Memory Subsystem

In this section we expand upon the previous by going in-depth into our virtual memory imple-
mentation, which includes a RISC-V-compliant Sv39 MMU consisting of a TLB and page table
walker.

6.1 TLB Implementation

gem5 implements a base TLB class that is used for instruction and data caches. Our gem5
TLB implementation is largely based on the TLB implementation for the ARM ISA, but with the
RISC-V virtual address translation algorithm implemented. In other words, functional, atomic, and
timings-based address translation calls are routed either through the translateFs or translateSe
methods. In our case, we move prior work to the translateSe method and focus on implementing
the translateFs method. The TLB description and implementation are located in src/arch/riscv.hh
and src/arch/riscv/tlb.cc, respectively. Additionally, some page table structures are implemented
and defined in src/arch/riscv/pagetable.hh.

The local page table of the TLB is stored in a CPP map data structure for simplicity. This data
structure maps virtual address bases (virtual address without offset) to TlbEntry structures. The
TlbEntry structures include the virtual address, physical address, page table entry, and ASID.

The actual address translation takes place in the translateFs method of the TLB. This method is
the main workhorse for all address translation types, PMP/PMA checking, and cache management
with respect to other TLB methods.

6.2 Physical Address Translation

When the satp CSR is set to bare translation mode, or the translation is occurring in machine
mode, the physical address is translated directly and hence there is no need to cache the address.
The address is simply checked against the PMP/PMA checker for potential access faults, before
the physical address field of the requesting packet is simply set to the unchanged physical address.

6.3 Virtual Address Translation

When the satp CSR is not set to bare translation mode and the mode is supervisor or user,
virtual address translation is required. The translation process starts with checking the TLB’s map
data structure. If there is a TLB hit, we simply translate the virtual address using the cached
physical address. If there is a TLB miss, we proceed with the virtual address translation algorithm
explained in the RISC-V privileged ISA specification, section 4.3.2. The source code is annotated
with each individual step of the virtual address translation algorithm.

6.4 Page Table Walker Implementation

The page table walker definition and implementation are in src/arch/riscv/table walker.hh and
src/arch/riscv/table walker.cc, respectively. Because a page table walker is a purely hardware
component with no RISC-V specification, we use a very simple design that only acts to facilitate
DMA transactions via the walk method.

The table walker is set up using gem5’s ports interface to connect it both to the L1 caches and
directly to the memory. Memory is accessed directly via the dmaAction method and the result is
stored locally.
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7 SimpleBoard Platform

The SimpleBoard platform, extended from prior work, inherits from the gem5 platform class.
Platforms are typically used to define SoCs and various on-chip interconnects. Though our target
SoC in future work will be the HiFive Unleashed 1 board, this SimpleBoard platform represents
the simplest possible implementation of a platform for RISC-V that can interface its I/O devices for
Linux-capable FS mode.

7.1 SimpleBoard Implementation

Our definition and implementation of the SimpleBoard platform can be found in src/dev/riscv/
simpleboard.hh and src /dev/riscv/simpleboard.cc, respectively. Additionally, the simulation object
parameters for the SimpleBoard platform, in addition to the pythonic class definitions for the other
devices hosted on the SimpleBoard are located in src/dev/riscv/SimpleBoard.py.

In addition to hosting SoC devices for RISC-V systems, the SimpleBoard platform is also used
to interface PCI and console interrupts, as well as host a generic UART device. The PCI interrupt
interface is required by our implementation for disk access, however the console interrupt interface
is currently unused.

The SimpleBoard SoC is instantiated and connected to the main system through the gem5 FS
mode configuration script.

7.2 SimpleBoard Devices and Parameters

All of the SoC devices are defined and linked to the SimpleBoard platform in src/dev/riscv/Sim-
pleBoard.py. These devices include the PLIC, CLINT, UART, and a RISC-V PCI host. A visual
representation of these devices can be found in figure 7.

Figure 7: A rough diagram showing the interconnects between the SimpleBoard SoC devices and
the RISC-V system. The lines with arrows represent interrupt lines to the PLIC and CPU while the
other connections are either peripheral I/O (PIO) interconnects or interconnects via the isa device
interface. PIO interfaces use packets and addresses to connect these devices.
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8 Platform-Level Interrupt Controller (PLIC)

In order to handle potentially simultaneous interrupts signals that come from peripheral devices,
the RISC-V ISA manual specifies the existence of a PLIC. The goal of the PLIC is to receive all
external interrupt signals (so-called ’global interrupts’), order them by priority, and then delegate
them to an available hart for handling.

For every potential source of a global interrupt, the PLIC defines a source number and highest
allowable priority mask. An interrupt source numbered 1 with a priority 7 has the highest interrupt
priority. Interrupt source 0 is reserved to mean ’no interrupt’.

8.1 PLIC Implementation

In our implementation, the PLIC is a BasicPioDevice on the SimpleBoard platform, and the first
of our ISA devices. The definition and implementation of the PLIC are found in src/dev/riscv/plic.hh
and src/dev/riscv/plac.cc, respectively. The configuration of the registers is defined as a map in the
source code and follows the same layout at the PLIC described in the FU540-C000 core manual
(20). This layout is reproduced in the next section.

8.2 PLIC Registers and Memory Layout

All PLIC registers are 32-bit and are listed in table 6. Additionally, all PLIC registers are read-
write registers, except for the pending array registers which are read-only. 64-bit registers are
split into two 32-bit registers with a low and high field that is automatically interfaced by RISC-V
software when accessing the PLIC.

Note that this PLIC was designed for the HiFive Unleashed SoC with five harts (one small CPU
core and 4 large CPU cores), even though our simulated FS mode system only simulates one core
(and therefore one hart) currently. We keep the registers for other harts for future work.

8.2.1 PLIC Source Registers

Each source number refers to a specific external device and designates a priority. For example,
in the FU540-C000 manual, sources 1-3 refer to the L2 cache controller, source 4 refers to UART0,
and so on. The values stored in the registers are 3-bit source priority values. A value of zero
indicates that interrupts are disabled for the source, while a value of seven indicates that interrupts
are of the highest priority for the source.

Like with the additional registers for additional harts, we preserve all of the source registers for
future work. In our FS mode simulation, we technically only use the sources for UART and the PCI
host.

8.2.2 PLIC Interrupt Pending Array

The PLIC interrupt pending array is a one-hot representation of pending interrupts where the
bit index refers to the source number. For example, if bit 12 of the interrupt pending array is high,
it means source 12 is awaiting interrupt handling.
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Offset Register
0x0c000004 Source 1 Priority Register
0x0c000008 Source 2 Priority Register

... ...
0x0c0000d8 Source 54 Priority Register
0x0c001000 Interrupt Pending Array (low)
0x0c001004 Interrupt Pending Array (high)
0x0c002000 Hart 0 M-Mode Interrupt Enable (low)
0x0c002004 Hart 0 M-Mode Interrupt Enable (high)
0x0c002080 Hart 1 M-Mode Interrupt Enable (low)
0x0c002084 Hart 1 M-Mode Interrupt Enable (high)
0x0c002100 Hart 1 S-Mode Interrupt Enable (low)
0x0c002104 Hart 1 S-Mode Interrupt Enable (high)

... ...
0x0c002380 Hart 4 M-Mode Interrupt Enable (low)
0x0c002384 Hart 4 M-Mode Interrupt Enable (high)
0x0c002400 Hart 4 S-Mode Interrupt Enable (low)
0x0c002404 Hart 4 S-Mode Interrupt Enable (high)
0x0c200000 Hart 0 M-Mode Priority Threshold
0x0c200004 Hart 0 M-Mode Claim/Complete
0x0c201000 Hart 1 M-Mode Priority Threshold
0x0c201004 Hart 1 M-Mode Claim/Complete
0x0c202000 Hart 1 S-Mode Priority Threshold
0x0c202004 Hart 1 S-Mode Claim/Complete

... ...
0x0c207000 Hart 4 M-Mode Priority Threshold
0x0c207004 Hart 4 M-Mode Claim/Complete
0x0c208000 Hart 4 S-Mode Priority Threshold
0x0c208004 Hart 4 S-Mode Claim/Complete

Table 6: PLIC register listings.

8.2.3 PLIC Interrupt Enable Registers

The PLIC interrupt enable registers masks the available interrupts using the same one-hot
representation used by the interrupt pending array. If an interrupt is pending and a hart is ready
to handle an external interrupt, the hart will check the interrupt pending array against its assigned
interrupt enable array, based on the current hart’s number and privilege mode.

8.2.4 PLIC Priority Thresholds

The PLIC priority threshold register holds a 3-bit priority value. In order for a hart of specific
number and privilege mode to be able to handle an interrupt, its threshold value must be lower
than the source priority value.
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8.2.5 PLIC Claim/Complete Registers

The PLIC claim and complete registers are used for the PLIC claims process, described in the
next section.

8.3 PLIC Claim/Complete Operations

At a high level, the PLIC is meant to perform two major operations in addition to standard reads
and writes to its registers: PLIC claim, and PLIC claim complete.

When a hart is ready to handle an external (global) interrupt, it ’claims’ the interrupt (making it
unavailable to other harts) by sending a read request to the hart’s claim register. This will read the
PLIC’s interrupt pending array, clear the bit associated with the highest priority pending interrupt,
and return the source number to the hart. The hart can then use the source number to jump to the
correct interrupt handler for the source.

When a hart is finished handling an external interrupt, it performs a ’claim complete’, where it
sends a write request to its claim/complete register. This register will hold the source number of
the last completed external interrupt.

8.4 PLIC postInt and clearInt Methods

In our FS mode implementation, we use postInt and clearInt to send interrupts to the CPU.
These methods are used primarily by the platform to forward PCI interrupts. Additionally, we only
send M-mode and S-mode interrupts to the CPU; U-mode external interrupts can be delegated
depending on the mideleg CSR.

The sendInt method will send an external interrupt to the CPU if the source priority exceeds the
source threshold as well as set the appropriate bit in the PLIC pending array. Likewise, the clearInt
method will clear an interrupt in the CPU and clear the appropriate bit in the PLIC pending array.
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9 Core-Local Interrupter

The CLINT, expanded from prior work (10), houses the system’s main clock. As a result, the
CLINT is responsible for posting timer interrupts to its local CPU and associated harts. While there
would usually only be one PLIC in a real system, there is usually one CLINT per hart.

In addition to posting timer interrupts, the CLINT is also responsible for posting software in-
terrupts. Our implementation loosely follows that of the CLINT implementation of the HiFive Un-
leashed SoC, so our CLINT will post only M-mode software interrupts (20). As software interrupts
are typically only used for cross-hart communication, they remain untested in .

9.1 CLINT Implementation

Like the PLIC, our CLINT is implemented as a BasicPioDevice on the SimpleBoard platform
that is also an ISA device. The definition and implementation of the CLINT are found in src/de-
v/riscv/clint.hh and src/dev/riscv/clint.cc, respectively. In , the CLINT is set up such
that there is only one instance of the object in the whole system, but to handle multi-core and
multi-hart systems in future work, we define a CpuTimer class that contains core-local and hart-
local registers. The timer in the CLINT is, by default, set to 1MHz. The registers and layout of the
CLINT are shown and described in the following section.

9.2 CLINT Registers and Memory Layout

Like with the PLIC, the CLINT register layout follows that of the FU540-C000 core from the
HiFive Unleashed SoC, and can be seen in table 7. There is only one mtime register in the CLINT,
but there is one mtimecmp and msip register per hart. All registers are read-write. Unlike the PLIC,
the offsets of the mtimecmp and msip registers are generated as a function of the base offset
added to the width of those register.

Offset Bit Width Register
0x00000000 4 Hart 0 Interrupt Pending
0x00004000 8 Hart 0 Time Compare
0x0000bff8 8 Hart 0 Timer

Table 7: CLINT register listings.

For example, for hart 1 the offset of the interrupt pending (msip) and time compare (mtimecmp)
CSRs would be 0x00000004 and 0x00004008, respectively.

9.2.1 CLINT Timer Register and the mtime CSR

The mtime CSR from the CPU’s register file is a memory-mapped CSR. A read/write opera-
tion to the CSR must perform the operation to the actual register location, which in our case, is
the CLINT. The CLINT stores the mtime CSR as a simple 64-bit unsigned integer, which can be
read/written to directly via address or via the ISA device interface.

In a real (non-simulated) system, the CLINT’s timer would be tied to an external oscillator tuned
to a constant frequency. Reading the mtime CSR means reading the timer register, which returns
the number of cycles the oscillator has processed since system start. As gem5 is an event-based
simulator however, implementing a timer directly in this way would be incredibly inefficient and
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increase simulation times significantly due to the number of added discrete events to the event
queue. Therefore, the timer only changes with discrete events – primarily reads/writes to the
CLINT.

When the timer needs to be updated, it is done through the updateTime method. This method
calculates the timer’s current value as a function of the default clock frequency of the timer and the
current tick of the simulator. Note that it is also possible to write to the timer register, and therefore
we preserve an offset value as well to incorporate into the timer update method.

9.2.2 CLINT Time Compare Register

The CLINT timer compare register, mtimecmp, is a register that determines when a timer inter-
rupt must be posted. A timer interrupt is posted whenever the mtime CSR is greater than or eqeual
to mtimecmp. Setting mtimecmp to INT MAX effectively disables timer interrupts. The mtimecmp
register only determines when a timer interrupt is posted to the hart it is attached to, and in a
MPSoC, there would be one mtimecmp register per hart.

9.2.3 CLINT Software Interrupt Pending Register

The msip register is supposed to hold one bit that indicates of a software interrupt is pending
or not. In our implementation however, we tie the msip register directly to the mip CSR, and thus
a read or write operation to the msip register in the CLINT is directly reflected in the mip CSR
instead.

9.3 CLINT Timer Interrupts

Timer interrupts occur whenever a CPU’s mtimecmp register is greater than or equal to the
mtime CSR. In our implementation, we use gem5’s event queue to schedule ”timer alarms” that go
off and post either M-mode or S-mode timer interrupts to the CPU.

Initially, the simulated system starts with mtime at 0 and timecmp at INT MAX, so timer inter-
rupts are disabled. mtime will be modified any time it is read or written to by the simulation. When
mtimecmp is written to, mtime is updated and an event (timer alarm) is scheduled for when mtime
should be greater than or equal to mtimecmp. This timer alarm, when run, will verify mtimecmp
and mtime, and then post a timer interrupt to the CPU. The software interrupt handler will then
reset mtimecmp, which writes mtimecmp and consequently starts the timer alarm process again.

If mtimecmp is written to again in between the aforementioned cycle, the previous timer alarm
event is descheduled and a new one is scheduled in its place. Note that even setting mtimecmp
back to INT MAX would still set a timer alarm, although at a tick extremely far into the future.
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10 Miscellaneous SimpleBoard SoC Devices

10.1 RISC-V PCI Host

For access to a disk image, gem5 uses a simulated PIIX4 IDE controller connected via PCI bus
to a generic PCI host model. Our SimpleBoard SoC defines a GenericRiscvPciHost object that
inherits from the base gem5 GenericPciHost object, and is defined and implemented in src/de-
v/riscv/pci host.hh and src/dev/riscv/pci host.cc, respectively.

The sole purpose of the custom PCI host is to map the correct source interrupt number from
the PCI host to the PLIC. In our implementation, this is the base interrupt source number added to
the PCI interrupt number. The base source number for the PCI host is 0x20, and thus the source
numbers for all potential PCI interrupts are 0x21, 0x22, 0x23, and 0x24, although it is observed
that only source number 0x21 is used.

10.2 UART

The UART module is incorporated into the RISC-V system using the Uart8250 model that
comes with the vanilla gem5 release.
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11 Future Work

In this section, we discuss the trajectory of this project and its short and long-term goals.
Ideally we would like to simulate most of the features of a full-fledged RISC-V SoC so that system
configurations ranging from embedded systems to high-performance computing systems can be
verified and analyzed. The sections below outline some of the most crucial steps towards achieving
this goal.

11.1 Formal Verification and Validation

While having a functionally correct simulation of RISC-V hardware is ideal, it is only useful if
it can accurately represent real-world hardware as well. The next major milestone is to tune the
latencies and models (including different CPU types) against a real RISC-V system. This will show
that can be used to accurately represent the performance of RISC-V systems, and
thus can be used to conduct design-space exploration of new RISC-V systems.

11.2 MPSoC Support

Given that even the most basic embedded systems nowadays include multiple CPU cores, it is
crucial that our RISC-V simulator be able to simulate multiple cores and their interactions, including
parallel workloads, shared caches, etc.
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13 Glossary

13.1 Acronyms

Acronym Term Description

CLINT Core-Local Interrupt Controller Interrupt controller responsible for dele-
gating timer and software interrupts to a
local hart.

CSR Control and State Register RISC-V term for registers responsible for
preserving system information and state.

DTB Data Table Buffer The L1 cache for data within the CPU.

hart RISC-V Hardware Thread RISC-V term hardware thread within a
CPU.

ITB Instruction Table Buffer The L1 cache for instructions within the
CPU.

MMU Memory Management Unit Hardware component that contains a TLB
and page table walker.

PCI Peripheral Control Interface A standard meant to facilitate control of
peripheral devices. A PCI system typi-
cally includes a host connected to a bus,
connected to a series of PCI-compatible
devices.

PLIC Platform-Level Interrupt Controller Interrupt controller responsible for del-
egating external interrupts to RISC-V
harts.

RV64GC RISC-V 64-bit General and Com-
pressed extensions

RISC-V 64-bit-word-width machine with
General and Compressed extensions.
The General and Compressed exten-
sions are the minimum extensions re-
quired to run a Linux-capable system.

PIO Peripheral Input/Output Usually used in reference to a PIO device,
refers to external device such as a UART
model.

Sv39 39-bit Supervisor Virtual Address One of several RISC-V virtual addressing
schemes specifying a 39-bit virtual ad-
dress width.

Page 32 of 35



13. GLOSSARY

Acronym Term Description

TLB Translation Lookaside Buffer Generic term for hardware memory
cache, typically apart of the MMU.

13.2 Terms

Term Description

Exception A synchronous fault with respect to CPU cycles.

Fault General term in RISC-V referring to various kinds of traps (e.g., page
fault).

Interrupt An asynchronous fault with respect to CPU cycles.
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