
Horizon 2020 Program (2014-2020)
FET-Open – Novel ideas for radically new technologies

FETOPEN-01-2018-2019-2020

Architecting More than Moore – Wireless Plasticity for Massive
Heterogeneous Computer Architectures †

D4.3: Heterogeneous System-on-Chip

31/03/2023
31/03/2023

Public
Nazareno Bruschi (UNIBO)

UNIBO (leader)

Contractual Date of Delivery Actual
Date of Delivery
Deliverable Dissemination Level
Editor
Contributors
Quality Assurance Sergi Abadal (UPC)

†This project is supported by the European Commission under the Horizon 2020 Program with Grant
agreement no: 863337.

Ref. Ares(2023)2360390 - 31/03/2023

WiPLASH D4.3 H2020-FETOPEN-863337

Document Revisions & Quality Assurance

Deliverable Number D4.3
Deliverable Responsible UNIBO
Work Package WP4
Main Editor Nazareno Bruschi

Internal Reviewers
1. Peter Haring Bolı́var (UoS)
2. Giovanni Ansaloni (EPFL)

Revisions

Version Date By Overview
1.0.0 05/02/2023 Nazareno Bruschi (UNIBO) First draft
1.0.1 06/02/2023 Nazareno Bruschi (UNIBO) Added introduction
1.0.2 06/02/2023 Nazareno Bruschi (UNIBO) Added SoC description
1.0.3 06/02/2023 Nazareno Bruschi (UNIBO) Added simulation methodology de-

scription
1.0.4 07/02/2023 Nazareno Bruschi (UNIBO) Added wireless module description

and wireless-based system
1.0.5 07/02/2023 Davide Nadalini (UNIBO) Added training model and ResNet-

34 benchmark descriptions
1.0.6 07/02/2023 Nazareno Bruschi (UNIBO) Added inference model and

ResNet-18 benchmark descriptions
1.0.7 08/02/2023 Nazareno Bruschi (UNIBO) Added summary
1.0.8 08/02/2023 Nazareno Bruschi (UNIBO) Added inference results
1.1.0 13/02/2023 Nazareno Bruschi (UNIBO) removing placeholders
1.1.1 21/02/2023 Nazareno Bruschi (UNIBO) Added references
1.1.2 28/02/2023 Nazareno Bruschi (UNIBO) Added training results
1.1.3 28/02/2023 Nazareno Bruschi (UNIBO) Finalise for internal review
1.2.0 15/03/2023 Nazareno Bruschi (UNIBO) Integrate reviewer comments
1.2.1 15/03/2023 Nazareno Bruschi (UNIBO) Prepare for new results based on

the reviewer’s comments
1.2.2 20/03/2023 Nazareno Bruschi (UNIBO) Integrate new architecture figures
1.2.3 22/03/2023 Nazareno Bruschi (UNIBO) Integrate new architecture descrip-

tion
1.2.4 22/03/2023 Nazareno Bruschi (UNIBO) Integrate new wireless description
1.2.5 28/03/2023 Nazareno Bruschi (UNIBO) Integrate new results
1.2.6 29/03/2023 Nazareno Bruschi (UNIBO) Finalise results chapter
1.2.6 30/03/2023 Nazareno Bruschi (UNIBO) Last read
2.0.0 31/03/2023 Nazareno Bruschi (UNIBO) Submitted version

Legal Disclaimer
The information in this document is provided “as is”, and no guarantee or warranty
is given that the information is fit for any particular purpose. The above referenced

www.wiplash.eu 2 March 31, 2023

WiPLASH D4.3 H2020-FETOPEN-863337

consortium members shall have no liability to third parties for damages of any kind
including without limitation direct, special, indirect, or consequential damages that may
result from the use of these materials subject to any liability which is mandatory due
to applicable law. ©2019 by WiPLASH Consortium.

www.wiplash.eu 3 March 31, 2023

Executive Summary

The main subject of D4.3 is to describe the massively parallel heterogeneous architec-
ture and the wireless transmission module requirements explored in WiPLASH. This
report includes exhaustive results on state-of-the-art tasks in AI, such as inference
and training of common Deep Neural Network (DNN)s, in terms of latency, area, and
energy consumption compared against a state-of-the-art wired architecture. It first de-
scribes the reference architecture illustrating the bottlenecks and proposing the wire-
less module in different configurations as a solution for the traffic on the wired inter-
connect, especially going off-chip and to the memories, which limits the overall perfor-
mance. Then, it describes the simulator used for the entire performance assessment
process, the key characteristic and models, and the methodology used to evaluate the
wireless results. Subsequently, it outlines the computational models and the bench-
marks, highlighting the main advantages and drawbacks of using both technologies to
compute the selected applications. Finally, it explores the proposed wireless usage
and its evaluation based on the selected benchmarks, representative of an emerging
amount of modern DNN workloads. These findings will be exploited to evaluate the
feasibility and understand the impact (either positive or negative) of wireless commu-
nications at the architectural level, emphasizing domain-specific architectures. This
deliverable is related to task T4.1: ”Heterogeneous System On Chip” and T4.4, ”Wire-
less IO Interface Controller”, both led by UNIBO. All the activities related to these two
tasks have been successfully completed.

4

Abbreviations and Acronyms

ADC Analog-to-Digital

AI Artificial Intelligence

CNN Convolutional Neural Network

DAC Digital-to-Analog

DNN Deep Neural Network

DSE Design Space Exploration

FPGA Field Programmable Gate Array

GEMM General Matrix Multiply

HBI High-Bandwidth Interconnect

HBM High-Bandwidth Memory

HPC High-Performance Computing

IFM Input Feature Map

IMA In-Memory Accelerator

MAC Medium Access Control

MIPS Millions of Instructions Per Second

5

WiPLASH D4.3 H2020-FETOPEN-863337

mmWave millimeter Wave

MVM Matrix-Vector Multiplication

NiP Network-in-Package

NoC Network-on-Chip

nvAIMC non-volatile Analog In-Memory Computing

OFM Output Feature Map

PCB Printed Circuit Board

PCIe PCI Express 4.0

PCM Phase Change Memory

RTL Register Transfer Language

SGD Stochastic Gradient Descent

SiP System-in-Package

SoC System-on-Chip

TCDM Tightly Coupled Data Memory

TOPS Tera Operations Per Second

WP Work Package

www.wiplash.eu 6 March 31, 2023

WiPLASH D4.3 H2020-FETOPEN-863337

The WiPLASH consortium is composed by

UPC Coordinator Spain
IBM Beneficiary Switzerland
UNIBO Beneficiary Italy
EPFL Beneficiary Switzerland
AMO Beneficiary Germany
UoS Beneficiary Germany
RWTH Beneficiary Germany

www.wiplash.eu 7 March 31, 2023

Contents

1 Introduction 12

2 Massively Parallel Heterogeneous System-in-Package Architecture 14
2.1 System-in-Package Architecture . 14

2.1.1 Heterogeneous Accelerator . 14
2.1.2 I/O Hub . 17

2.2 Wireless Graphene-based Links . 18
2.3 Chiplet integration . 19

3 Simulation Infrastructure and Methodology 23
3.1 Time Modeling . 23
3.2 Performance Assessment . 23
3.3 Methodology . 24

4 Computational models 26
4.1 Inference . 26

4.1.1 Static Layer Mapping . 26
4.1.2 IMA Execution . 26
4.1.3 Pipelining . 27
4.1.4 Data Tiling . 27
4.1.5 Self-Timed Execution . 28

4.2 Training . 29
4.2.1 Forward . 29
4.2.2 Backward . 30
4.2.3 Update . 30
4.2.4 Synchronization . 31

5 Results and Discussion 32
5.1 ResNet-18 inference . 32

5.1.1 Initial Consideration . 32
5.1.2 Design Space Exploration . 33

5.2 ResNet-34 training . 34
5.3 Milestones and final remarks . 35

6 Conclusion 41

8

List of Figures

2.1 System-in-Package architecture. It comprises computing chiplets (i.e.,
C0-3), memory chiplets (i.e., M0-M3), and an I/O chiplet. On the left, it
is the wired version. On the right, it is the wireless one. The substrate
is the interposer. 15

2.2 A) Cluster architecture. B) Accelerator chiplet architecture. C) In-Memory
Accelerator (IMA) subsystem. D) Router model. 16

2.3 a) RedMulE internal architecture; b) RedMulE Datapath microarchitec-
ture; c) RedMulE CE microarchitecture; d) RedMulE Cast module; e)
Table with RedMulE design-time available parameters. 18

2.4 Chiplet integration in both cases. In the wired version (i.e., top), every
interposer is packed and posed on the Printed Circuit Board (PCB). In
the wireless version (i.e., bottom), the interposed are non-packed to
leverage the wireless long-range communications. The substrates are
then connected to motherboard sockets. 20

3.1 Wireless medium model in GVSoC. Wireless medium schedules events
in the GVSoC event engine when a new communication is established.
Contentions are detected and solved by the Medium Access Control
(MAC) protocol implemented in the model. 24

4.1 Distributed data-parallel approach used for the ResNet-34 training on
the proposed massively parallel system. Batches are executed inde-
pendently until the weights update step, where they are collected and
averaged before storing the final trained model. The entire execution is
repeated till the end of batches. 27

4.2 A) Directed Acyclic Graph (DAG) of the ResNet-18 execution. B) Map-
ping example on 512 clusters. C) High-level description of pipelining
computational model. 28

4.3 IMA execution model. Input and output data are stored in the Tightly
Coupled Data Memory (TCDM). Parameters have been offline pre-
stored in the IMA crossbar. The datapath autonomously feeds and
drains data from/to outside after a lightweight streamers programming
phase by one RISC-V core. 29

9

WiPLASH D4.3 H2020-FETOPEN-863337

5.1 Proposed architecture configuration for wired, wireless 0, wireless 1,
wireless 2, and hybrid 0 on top. Every color represents a different
frequency channel. Proposed architecture configuration for wireless
3, wireless 4, and hybrid 1 in the middle. Communications between
chiplets are allowed only via I/O hub. Proposed architecture configura-
tion for wireless 5 on the bottom. Every node has its I/O hub. Com-
munications between chiplets and nodes are allowed only via I/O hub.
They are multi-node and single-node architecture, respectively, with up
to 16 computing chiplets and 16 HBMs. The configurations details are
reported in Tab. 2.3. 36

5.2 Performance degradation considering non-idealities due to static map-
ping, network topology, and communication. 37

5.3 ResNet-18 inference results comparing ideal communication, reference
wired and several wireless configuration as described in Tab. 2.3. 37

5.4 Area efficiency of ResNet-18 inference on wired and wireless configu-
rations described in Tab. 2.3. 38

5.5 Speed-up against wired configuration executing ResNet-34 training in
wireless 1 and with 16 chiplets, considering the 2D convolution, linear
and residual layers computed by either RISC-V DSP cores and a state-
of-the-art tensor core and varying the wireless bandwidth. 38

5.6 Area efficiency of ResNet-34 training on wired and wireless main con-
figuration, with 512 clusters and 512 Gbit/s of wireless bandwidth and
considering the 2D convolution, linear and residual layers computed by
either RISC-V DSP cores and a state-of-the-art tensor core. 39

www.wiplash.eu 10 March 31, 2023

List of Tables

1.1 Collaboration between technical WPs to deliver this report. 13

2.1 Architecture parameters . 17
2.2 Interconnect parameters . 21
2.3 Architecture configuration. 22

5.1 Results table comparing wired and wireless 1 in both inference and
training benchmarks with 16 computing chiplets. 40

11

1. Introduction

With the end of Dennard scaling, multicore processors are now commonly employed,
as they present lower power consumption that single processing units. These pro-
cessors consist of multiple independent cores integrated into a single chip. In theory,
these processors have the potential to scale with the number of cores, but, in reality,
a high-throughput, low-latency on-chip interconnect is necessary for efficient commu-
nication between cores. As the number of cores increases, communication becomes
the main bottleneck, limiting multicore chip performance [1].

Recent architectural trends have shifted towards smaller, specialized chips called
”chiplets”, interconnected through a silicon interposer within a System-in-Package
(SiP). These chiplets are optimized for specific computations and off-chip transfers
dominate the communication requirements at the system level [2] [3] [4] [5]. Within
the chiplet, ultra-dense on-chip interconnects are needed to communicate and move
towards data-intensive accelerators, crucial for speeding up state-of-the-art Artificial
Intelligence (AI) tasks.

In the last decade, the standard interconnect fabric for multicore chips has been
Network-on-Chip (NoC), a packet-switched network of integrated routers and wires
arranged in a mesh topology. However, this approach has limitations when scaling
beyond a certain number of cores, leading to increased latency and energy consump-
tion. The extension of NoC to multi-chip SiPs, known as Network-in-Package (NiP),
exacerbates these issues, exploiting multi-hop and high-bandwidth channels [6] [7].

Recent advances in integrated millimeter Wave (mmWave) devices have made
wireless networks a promising alternative to traditional wired NoCs/NiPs. The ideal
scenario for chip-scale communication would be multiple cores interconnected through
a low-latency, multi-Tbit/s, energy-efficient memory. Wireless networks can connect
cores to off-chip memories with similar performance to on-chip caches while providing
scalable cache coherence.

The performance, efficiency, and flexibility of on-chip and in-package wireless com-
munication present an excellent opportunity to eliminate bottlenecks in current com-
puting systems. The main challenge is identifying where wireless can have the great-
est impact and then co-designing the network and architecture to optimally exploit the
wireless interconnect while avoiding overloading it. This can be a challenge due to the
disruptive potential of wireless innovations in the traditionally incremental architecture
domain [8].

For example, in deep learning applications, each layer of a DNN can be mapped to
an in-memory computing core that stores the corresponding synaptic weights. How-
ever, such accelerators present challenges for communication between cores and in-
terconnection with conventional digital cores. The physical localization of the synaptic
weights requires communication over large distances, making wired interconnects pro-
hibitive. DNNs also often require multicasting data from one core to multiple others,

12

WiPLASH D4.3 H2020-FETOPEN-863337

Table 1.1: Collaboration between technical WPs to deliver this report.

Description
WP income outcome
WP3 communication channels specifica-

tions such as bandwidth, latency,
energy/bit and available frequency
and spatial channels

execution traces extracted from
simulations

WP5 MAC protocol models and insights architecture simulator for domain-
specific accelerator

WP1
and
WP2

area and power for wireless anten-
nas and transceivers

performance targets to get the ar-
chitectural WP milestones

making wireless networks a promising solution for eliminating communication bottle-
necks in AI applications.

Work Package (WP)4 is naturally connected to the other WPs, and in particular,
with WP3 and WP5. Tab. 1.1 summarizes the collaborations on delivering this report.
WP3, mainly responsible of the communication channels, provides the characteriza-
tion of the components of the wireless communication, iterating with WP4 and WP5
to define the specifications to achieve the expected improvements replacing traditional
wired channels. While WP4 was providing the specifications, also on behalf of the
technology partners (i.e., WP1 and WP2), WP4 has provided the execution traces on
the different proposed architectures on different benchmarks to drive the direction on
the communication channels research. Together with WP5, WP4 defines the archi-
tectures, weekly sharing every step forward on researching the best architectures to
propose the disruptive wireless technology replacing part of the wired interconnects
and to have a fair comparison with the state-of-the-art. WP5 provided crucial insights
on the MAC protocols within the simulator models that WP4 has replicated in this
report. Together, we have collaborated on defining the benchmarks, navigating the
space of the AI algorithms, and proposing networks and tasks that are mostly used in
the specific domain of the goal of WP4.

The remainder of this deliverable is organized as follows. In Chapter 2, we exhaus-
tively detail the proposed reference architecture and the design choices. In Chapter 3,
we describe the simulator features and the simulation methodology to model the ar-
chitecture. In Chapter 4, we describe the execution models and detail the benchmarks
used to evaluate the system performance, focusing on mapping and possible bottle-
necks for the communications. In Chapter 5, we present the results obtained from
our simulator running the abovementioned benchmarks. We detailed the application,
system, and communication inefficiency and the design space exploration to find the
best trade-off in performance/area/power using graphene-based antennas. Finally, the
deliverable is concluded in Chapter 6.

www.wiplash.eu 13 March 31, 2023

2. Massively Parallel Heterogeneous System-
in-Package Architecture

Based on exhaustive research at the system level done within the WiPLASH project [9] [10],
the proposed architecture of this deliverable is the SiP architecture described in Fig. 2.1.
This architecture’s high scalability shows the wired infrastructure’s inefficiency, espe-
cially scaling up the system’s complexity from a single node represented here to a
multi-node system. Thanks to the modularity of the architecture, we can explore sev-
eral configurations to reveal the best suited for wireless communications. Moreover,
the design choice generates traffic while running the proposed benchmarks that would
be affordable only with aggressive optimization efforts on both the software and hard-
ware sides. It also aligns the work with the most recent computer architectures and
chip fabrication trends to improve and maintain a reasonable yield. The rest of this
chapter details the architecture in both configurations, explaining the benefits of each
component.

2.1 System-in-Package Architecture

This section presents the proposed heterogeneous many-core SiP architecture. It
consists of a chiplet-based architecture, where chiplets are grouped as (i) computing
chiplets, composed of multiple heterogeneous (analog/digital) accelerators organized
in a hierarchy of quadrants (i.e., C0-C3 and Q0-Q3 in Fig. 2.1), (ii) I/O chiplets to
route the chiplet-to-chiplet communications efficiently, and (iii) the memory chiplets,
composed of High-Bandwidth Memory (HBM)s (i.e., M0-M3 in Fig. 2.1). This architec-
ture is inspired by state-of-the-art chiplet-based architecture recently developed and
launched as commercial products from several market leaders [11] [12]. For wired
version, we assume up to 4 computing chiplets and 4 HBMs per I/O hub. With more
computing and memory resources needed, the node can be extended via PCI Express
4.0 (PCIe) interface, building a multi-node system. The same has been assumed for
the wireless version, but even exploring different design choices, such as with more
chiplets connected to the same I/O hub or even without I/O hub, as we will see in
Sec. 5.

Every component of the proposed SiP architecture is separately detailed in the rest
of this section.

2.1.1 Heterogeneous Accelerator
The architecture of the computing chiplet and its components are depicted in Fig. 2.2.
It is composed by three main parts: (i) the cluster, (ii) the IMA and the tensor core, and

14

WiPLASH D4.3 H2020-FETOPEN-863337

H
B
I

H
B
M

H
B
I

A
X
I
4

H
B
I

H
B
M

H
B
I

A
X
I
4

PCIe4.0

PCIe4.0

Q0 Q2

Q1 Q3

Q4 Q6

Q5 Q7

Q12 Q14

Q13 Q15

Q8 Q10

Q9 Q11
C2

C3C1

M2M3M0

D
A

D
A

D
A

A
X
I
4

D
A

D
A

D
A

A
X
I
4

NDA

NDA

Q0 Q2

Q1 Q3

Q4 Q6

Q5 Q7

Q12 Q14

Q13 Q15

Q8 Q10

Q9 Q11
C2

C3C1

M2M3M0

Figure 2.1: System-in-Package architecture. It comprises computing chiplets (i.e., C0-
3), memory chiplets (i.e., M0-M3), and an I/O chiplet. On the left, it is the wired version.
On the right, it is the wireless one. The substrate is the interposer.

(iii) the hierarchical interconnects. These allow to build the heterogenous multi-cluster
computing chiplets.

Tab. 2.1 summarizes the design choices for the entire architecture. It includes the
knobs we implemented and evaluated in the Design Space Exploration (DSE) done in
Sec. 5.

2.1.1.1 Cluster

The core of the proposed system architecture (i.e., Fig. 2.2B) consists of a heteroge-
neous analog/digital accelerator called cluster (i.e., Fig. 2.2A). Each cluster contains a
set of RISC-V cores (CORES) [13], a shared multi-bank scratchpad data memory (L1)
enabling Single Program Multiple Data computations, a hardware synchronizer to ac-
celerate common parallel programming primitives such as thread dispatching and bar-
riers, and a DMA for the cluster-to-cluster and cluster-to-HBM communication. Each
cluster also includes a non-volatile Analog In-Memory Computing (nvAIMC) IMA (i.e.,
Fig. 2.2C) sharing the same multi-banked memory as the CORES for efficient commu-
nication, similarly to the architecture presented in [14], or a tensor core, called Red-
MulE, that accelerates compact floating point tensor operations, especially for training
and inference of high-precision networks, as described in [15].

2.1.1.2 In-Memory Accelerator

The IMA is built around a Phase Change Memory (PCM) computational memory orga-
nized as a 2D array featuring horizontal word lines and vertical bit lines (Fig. 2.2C). In
computational memory, the PCM cells are exploited as programmable resistors placed
at the cross points between the word lines and the bit lines. This allows Matrix-Vector
Multiplication (MVM) in the analog domain with high parallelism and efficiency. In this
work, we assume an MVM to be executed in 130 ns as reported in [16]. At the be-
ginning of each word lines and the end of each bit lines, Digital-to-Analog (DAC) and
Analog-to-Digital (ADC) converters perform the conversion between analog and digital
domains, respectively. ADCs and DACs connect to two digital buffers connected to the
L1 memory through streamers featuring programmable address generation.

www.wiplash.eu 15 March 31, 2023

WiPLASH D4.3 H2020-FETOPEN-863337

Crossbar

B0 B1 B2 B3 B4 BN

I-Cache

RVRVRV

DMAEV

IMA

L1 Local TCDM

HBI

L3

L1 L1

L1 L1

L
2

L3

CL

L1

CL

CL CL

CL

L1

CL

CL CL

CL

L1

CL

CL CL

CL

L1

CL

CL CL

W
r
a
p
p
e
r L
2

CL CL

CL CL

CL CL

CL CL

CL CL

CL CL

CL CL

CL CL

L2
quad

L1
quad

L3
quadrant

AIMC CORED
A
C

ADC

CTRL

S
t
r
e
a
m
e
r
s

output buffer

i
n
p
u
t

b
u
f
f
e
r

Analog domain

HBI link

M S
write
read

L2_Q0

L2

L2_Q1

L2_Q2 L2_Q3

L3

chiplet

A)

C)

B)

D)

Figure 2.2: A) Cluster architecture. B) Accelerator chiplet architecture. C) IMA sub-
system. D) Router model.

2.1.1.3 Tensor core

RedMulE [15] is a domain-specific processor designed to accelerate General Matrix
Multiply (GEMM) operations. Its architecture is shown in Fig. 2.3a). The core of
RedMulE is the Datapath, a 2-Dimensional array of CEs interconnected as shown
in Fig. 2.3b). The CEs are organized in L rows, each made of H columns. Within
each row, a number of HCEs are cascaded so that each CE computing an intermedi-
ate product will pass its result to the next CE. The partial product computed by each
row’s last CE is fed back as accumulation input of the same row’s first CE. The Red-
MulE Datapath features a design-time configurable number of internal CEs, pipeline
registers (P) for each CE, and internal computing precision (FP bitwidth). To feed the
Datapath with data, RedMulE includes the Streamer, following the HWPE design strat-
egy. Hybrid FP8 precision formats can be used as an efficient compression scheme
to enable DL inference and training on extreme-edge devices.

2.1.1.4 On-chip Interconnect

The interconnect infrastructure connecting the clusters consists of a highly parametriz-
able hierarchical network composed of a set of compatible AXI4 nodes, as proposed
in [17]. The network topology specifies different regions called quadrants connecting
groups of clusters: the Level 1 nodes connect N1 quadrants (clusters), the Level 2
nodes connect N2 Level 1 quadrants, and the Level Level N nodes connect NN Level
N-1 quadrants, as shown in Fig. 2.2B for 3 levels. The Quadrant Factor for a given
level N defines the number of quadrants (either clusters or level N-1 quadrants) con-
nected to the AXI node for each level. Clusters feature a master and a slave port,
which means that a transaction can either be initiated by the target cluster through its
master port or by any other cluster through the target cluster’s slave port. The same
concept applies to the whole hierarchy of quadrants. In both cases, transactions can

www.wiplash.eu 16 March 31, 2023

WiPLASH D4.3 H2020-FETOPEN-863337

Table 2.1: Architecture parameters

System
Number of nodes (1, 2, 4)

Operating frequency 1 GHz
Number of computing chiplets (1, 2, 4, 8, 16)
Number of memory chiplets (4, 8, 16)
Number of I/O hub chiplets (1, 2, 4)

Chiplet
Number of clusters (per computing chiplet) (512, 256, 128, 64, 32)

Total HBM size 1 GB
Cluster

Number of IMA 1
Number of CORES 16

Number of DMA 1
L1 memory size 1 MB

IMA
Number of streamers ports 16 (half-duplex)

Crossbar size 256×256
Analog latency (MVM operation) 130 ns

CORES
ISA RISC-V + PULPV2 extensions

DMA
Local ports 32 (full-duplex)

Max burst size 2048 bytes

be either read or write transactions with full support for bursts according to AXI4 spec-
ifications (i.e., Fig. 2.2D). The chiplet embeds an interface to be connected to other
chiplets via an efficient serial link called High-Bandwidth Interconnect (HBI) [18].

2.1.2 I/O Hub
To connect chiplets, the proposed architecture has an I/O hub, a special chiplet that
contains all the routing components, and the I/O interfaces, such as the HBM controller
and PCIe. The former connects the computing chiplets with the main off-chip memory,
and the latter might connect the chiplet nodes together, composing a parametrizable
multi-node architecture. Every interconnect technology has been modeled based on
state-of-the-art implementations [18] [19] [20] whose main parameters and features
are summarized in Tab. 2.2.

www.wiplash.eu 17 March 31, 2023

WiPLASH D4.3 H2020-FETOPEN-863337

Figure 2.3: a) RedMulE internal architecture; b) RedMulE Datapath microarchitecture;
c) RedMulE CE microarchitecture; d) RedMulE Cast module; e) Table with RedMulE
design-time available parameters.

2.2 Wireless Graphene-based Links

Recent studies suggest that wireless networking can be applied in heterogeneous
multi-chip architectures by integrating antennas, transceivers, and computing elements.
In this approach, the computing package serves as the wireless propagation medium,
bypassing wire routing constraints and offering low latency and scalable broadcast ca-
pabilities [21]. Additionally, the use of wideband channels beyond 60 GHz results in the
potential for high bandwidths in the tens or hundreds of Gbit/s [22]. This type of inter-
connect is versatile, as the bandwidth can be shared dynamically among the antennas
to meet architecture needs [23]. A defining feature of the wireless interconnect is its
seamless support for multicast and broadcast. However, in practice, wireless tech-
nologies may experience packet collisions and losses, resulting in decreased effective
bandwidth due to re-transmissions [21], and the MAC protocol assumes a crucial role
to guarantee high performance [?].

In this work, we extensively use wireless properties and especially the availability of
decoupled frequency and spatial channels. We assume simple, low-order modulations
with spectral efficiency of 1 b/s/Hz. This means that for each Hz of spectral bandwidth,
we obtain 1 bit/second in data rate. In this scenario, the number of frequency channels
will be calculated by taking the entire spectrum considered and dividing it into chunks
of, say, 20 GHz (20 Gb/s). However, this only concerns the creation of multiple links
operating in parallel and does not imply an increase in the overall bandwidth. This
means that if the total available bandwidth is 200 GHz (equivalent to a rate of 200
Gb/s), the fact that I divide it into several frequency channels does not increase the
overall system bandwidth, which stays at 200 Gb/s. On the other hand, the number of
spatial channels is estimated based on the capability of creating antenna arrays that
can direct/focus energy in specific parts of the chip. This assumption allows multiplying
the entire system bandwidth by the number of spatial channels. So, if my available
bandwidth is 200 GHz (equivalent to a rate of 200 Gb/s) and I have 5 spatial channels,
my overall system bandwidth is 1000 Gb/s.

www.wiplash.eu 18 March 31, 2023

WiPLASH D4.3 H2020-FETOPEN-863337

This work proposes a wireless transmission module composed of two-frequency
channel antennas for simultaneous transmission and reception, maximizing traffic man-
agement. The module contains all the components needed to interface digital and ana-
log parts, supporting outstanding transactions. This keeps the asynchronicity feature
allowing non-blocking transfers. Antennas in the system share the same propagation
medium and MAC protocols implement the mechanisms required for synchronization,
safe access, and collision handling in a shared transmission medium, as is the case
of wireless transmission links. Here, we have implemented the exponential backoff
protocol, emulated in the MAC layer of the wireless transmission module, a random
access protocol that manages collisions by retransmitting lost data. When employing
it, a transceiver receiving a transmission request waits randomly within a dynamically-
sized window. The window size is dynamically adjusted according to the network load
to balance the transmission rate and the probability of causing a collision. When a colli-
sion is detected by the physical layer, the window size increases, and the transceivers
involved reschedule the corresponding transmissions. Similarly, when a successful
transmission is observed, the length of the window is reduced. The implemented expo-
nential backoff protocol allows for the growth rate modification, window size reduction,
and tuning of the maximum window size.

The proposed architecture replaces the wired interconnect infrastructure at differ-
ent levels to explore every design space. Considering the component size, wireless
antennas have been posed in the following conditions: replacing (i) only the PCIe com-
munications, (ii) the chiplet-to-chiplet communications on the same node and between
different nodes, to connect (iii) all the chiplets to the same I/O hub, building a single-
node architecture, and to connect (iv) all the chiplets together, without the I/O hub to
centralize the communications, as summarized in Tab. 2.3. In this table, with single-
single we refer to a situation where we have a single frequency channel in a single
spatial channel (i.e., they have the full bandwidth but can conflict). With multi-single
we refer to a situation with multiple frequency channels in the same spatial channels
(i.e., they share the bandwidth but without conflicting). Ultimately, with multi-multi chan-
nels we refer to a situation of multi frequency channels in multi spatial channels (i.e.,
sharing the bandwidth as group).

These solutions aim to exhaustively explore the design space, enabling the usage
of architectures that are not feasible at all with the traditional wired technology without
several area and power increments. At system level, we have exploited different spatial
channels (i.e., up to three) to decouple chiplet to chiplet, chiplet to HBM, and chiplet
to node communications, while we have exploited different frequency channels to re-
duce the contentions between chiplets communications. These assumptions require
careful node design rules to distance the components to avoid interference between
the abovementioned communications.

2.3 Chiplet integration

Fig. 2.4 describes the chiplets integration and the off-chip interconnects. The topmost
figure, in particular, refers to a traditional wired integration, where every SiP is pack-
aged and posed on a PCB substate. The silicon interposer in every package routes
the different chiplet’s communications. The off-chip communications are routed via
the PCB. in these architectures, the chiplets are usually implemented in an advanced

www.wiplash.eu 19 March 31, 2023

WiPLASH D4.3 H2020-FETOPEN-863337

PRINTED CIRCUIT BOARD (PCB) SUBSTRATE

INTERPOSER 0

ACC 0-3 I/O 0HBM 0-3

INTERPOSER 1-3

ACC 0-3 I/O 0HBM 0-3

PACKAGE SUBSTRATE 1-3PACKAGE SUBSTRATE 0

MOTHERBOARD SUBSTRATE

INTERPOSER 0

ACC 0-3 I/O 0HBM 0-3

INTERPOSER 1-3

ACC 0-3 I/O 0HBM 0-3

SUBSTRATE 1-3SUBSTRATE 0

Figure 2.4: Chiplet integration in both cases. In the wired version (i.e., top), every
interposer is packed and posed on the PCB. In the wireless version (i.e., bottom), the
interposed are non-packed to leverage the wireless long-range communications. The
substrates are then connected to motherboard sockets.

technology node. In contrast, the interposer that contains the chip-to-chip links is im-
plemented in less scaled technology. This helps to contain the fabrication costs and
the process yield. The bottom part of Fig. 2.4 refers to the version of the architecture
using the wireless channels as both on- and off-chip interconnect. In particular, the
structure would be the same for the SiP without the package. In fact, to allow wire-
less communication between nodes, the radiation should have a proper propagation
medium, and the SiP package would be isolation. Therefore, in the case of wireless
interconnect the SiPs are non-packaged and can communicate with each other in the
communication range. Important to notice is that the communication between nodes
is allowed only between I/O hub chiplets, de-facto concentrating the communications
on a specialized component.

www.wiplash.eu 20 March 31, 2023

WiPLASH D4.3 H2020-FETOPEN-863337

Table 2.2: Interconnect parameters

On-chip Interconnect
cluster-to-cluster AXI 4 full-crossbar

I/O AXI 4 full-crossbar
AXI 4 full-crossbar

Direction full-duplex
Bandwidth 512 Gbps

Latency 4 cycles
Lane 1

Off-chip Interconnect
chip-to-chip HBI
chip-to-mem HBM
node-to-node PCIe 4.0

HBI HBM PCIe 4.0
Direction full-duplex full-duplex full-duplex

Bandwidth 112 Gbps 512 Gbps 32 Gbps
Latency 100 cycles 100 cycles 500 cycles

Lane 2 2 32
Integrated Wireless Communications

Maximum distance 30 cm
Bandwidth (64, 128, 256, 512) Gbps

Latency 1 ns
Frequency channels up to 16

Spatial channels up to 4
Wireless Transmission Module

Number of antennas 2
Number of frequency channels 2

MAC Layer
Protocol exponential backoff

Overhead 1 cycle
Exponential backoff

Contention window size 256 cycles
Max backoff exponent 16

www.wiplash.eu 21 March 31, 2023

WiPLASH D4.3 H2020-FETOPEN-863337

Table 2.3: Architecture configuration.

Communication
Technology On-chip Wireless

line
In-package Off-package

wired AXI4 none HBM HBI PCIe
wireless 0 AXI4 data, ctrl,

insn
HBM HBI wireless

single-single
channels

wireless 1 AXI4 data, ctrl,
insn

HBM wireless
multi-single
channels

wireless
single-single
channels

wireless 2 AXI4 data, ctrl,
insn

wireless
multi-single
channels

wireless
multi-single
channels

wireless
single-single
channels

hybrid 0 AXI4 data wireless
multi-single
channels

wireless
multi-single
channels

wireless
single-single
channels

wireless 3 AXI4 data, ctrl,
insn

HBM wireless
multi-multi
channels

none

wireless 4 AXI4 data, ctrl,
insn

wireless
multi-multi
channels

wireless
multi-multi
channels

none

hybrid 1 AXI4 data wireless
multi-multi
channels

wireless
multi-multi
channels

none

wireless 5 AXI4 data, ctrl,
insn

wireless
single-single
channels

wireless
single-single
channels

none

www.wiplash.eu 22 March 31, 2023

3. Simulation Infrastructure and Methodology

We modeled the proposed architecture by extending an open-source simulator named
GVSoC [24] meant to simulate RISC-V-based clustered multi-core architectures. It is
a C++ event-based simulator featuring a simulation speed of 25 Millions of Instructions
Per Second (MIPS) and an accuracy of more than 90% compared to a cycle-accurate
equivalent architecture when simulating a full DNN in a single cluster, as reported
in [24].

3.1 Time Modeling

In addition to the functional top accuracy, GVSoC has timing models for every relevant
activity, such as instructions execution, DMA transfers, and memory accesses. It can
emulate the actual system execution and provides a comprehensive set of statistics
using hardware features or dedicated profiling tools. In this context, a global time
engine manages the overall time (at the picosecond scale). A clock engine models a
clock source as a forward monotone counter associated with a queue of related clock
events, which are generic workloads associated with a specific clock cycle. Each event
includes a data payload and a pointer to an associated callback function. The clock
engine defines a time window (Tw) in which the close enough events are included in a
circular buffer. The execution of these events is done cycle-by-cycle, and simultaneous
ones are executed sequentially using a non-ordered queue. The circular buffer can be
fed with new events at any time if its execution cycle is inside Tw. If it is greater than Tw,
the clock engine stores the event information in an ordered queue that is read every
time a circular lap is completed. A different frequency can be set for each clock engine,
enabling the integration with the global time engine. The mapping of clock events into
the global time domain is performed by multiplying the clock period by the difference
between the current clock counter and the clock time associated with the event.

3.2 Performance Assessment

To extract the execution and timing information, every core models a set of perfor-
mance counters as the real hardware, measuring the events. These counters could be
activated simultaneously, having one counter for each metric and saving much simula-
tion time. Timing information is also stored in a complete set of system traces. Every
trace could be either an event or if the event is quite critical, could there be more than
one trace per event. The same system traces that could be used to extract timing
information are beneficial to extract debugging information such as the content of the
registers during the execution.

23

WiPLASH D4.3 H2020-FETOPEN-863337

Module0 Module1

Module2 Module3

R
O

U
TE

R

port0 port1

port2 port3

t0 t1 t2 tn

ti

t
t2 t2+d2t1 t1+d1

scheduled requests queue

t0 t1 ti tn

scheduled requests queue

t2

MAC protocol

conflict

GVSoC Event
scheduler

scheduled to be
executed at t0+do

new request at ti
with di of

duration from port i
MAC protocol has resolved the conflict,

assigning new execution times to
the conflicting requests

Figure 3.1: Wireless medium model in GVSoC. Wireless medium schedules events in
the GVSoC event engine when a new communication is established. Contentions are
detected and solved by the MAC protocol implemented in the model.

3.3 Methodology

The main components integrated into the simulator are the IMA and the interconnect
infrastructure extending the simulator’s capabilities towards many-core accelerators
(i.e., up to 512 clusters and 8192 RISC-V cores). The IMA is integrated into the cluster
as a master of the cluster crossbar. All the components of the IMA have been mod-
eled, including the input and output buffers and the streamers. At the system level,
the interconnect infrastructure has been modeled as a set of parametric router com-
ponents with configurable data width, latency, and the number of master and slave
ports combined together to create the topology described in Fig. 2.2D. The intercon-
nect component in GVSoC has been modeled as a router, which models the routing
of the generic transactions. The component models the ports and has an associated
latency for routing from one component to another. It models the contentions depend-
ing on the type of technology, topology and features, adding a delay to the forwarded
transaction. Every interconnect component is configurable, specifying, for example,
the number of ports, the latency, and the mapping. Tab. 2.1 and 2.2 describe the con-
figuration parameters of the platform used in this work. All the modules in the simulator
have been calibrated using the cycle-accurate Register Transfer Language (RTL) and
Field Programmable Gate Array (FPGA) equivalent, excluding the wireless transmis-
sion module. 256×256 IMA size has been used since it has been demonstrated in
more works and shows better technological feasibility at this time [16].

Wireless transmissions have been modeled as described in Fig. 3.1. We have
focused this work on the random access MAC protocol described in Sec. 2.1. The
wireless medium is modeled using a particular router, where the modules connected
share the same spatial and frequency channels. Every port can produce a request for
any other port independently and simultaneously if they do not start and finish at the
same ports (i.e., from port0 to port1 and from port2 to port3). In fact, the transmission
from an antenna automatically blocks the antenna at the receiver side. Every request
has a timestamp to be scheduled and a duration accordingly to the bandwidth and the
packet size. The model stores the requests in a scheduled requests queue whether
they are not conflicting in time. The scheduled queue is kept ordered to maintain

www.wiplash.eu 24 March 31, 2023

WiPLASH D4.3 H2020-FETOPEN-863337

coherency in time. The first scheduled request is always scheduled in the GVSoC
event engine at the correct time (i.e., time+ duration). Whether a conflict occurs, like
for the case depicted in Fig. 3.1, the model calls the MAC protocol to resolve the conflict
and reschedule the transmission. The conflicts handler manipulates the timestamps
of the conflicting requests accordingly to the particular protocol until all the conflicts
(also the ones recursively generated) have been resolved and every request has been
correctly rescheduled.

www.wiplash.eu 25 March 31, 2023

4. Computational models

In this chapter, we detail the implemented computational models to execute end-to-end
Convolutional Neural Network (CNN) inference and training on the proposed device,
describing the main characteristics of the execution and data flow, the synchronization
between the involved engines, and the computation paradigms.

4.1 Inference

This section presents the computational model of the proposed massively parallel het-
erogeneous architecture computing an end-to-end inference, detailing its main char-
acteristics: Layer Mapping, IMA execution, Pipelining, Data Tiling, and Self-Timed
Execution Flow.

4.1.1 Static Layer Mapping
According to the computational model of the proposed architecture, each layer of a
DNN is statically mapped to a certain number of clusters, while the Input Feature Map
(IFM)/Output Feature Map (OFM) are streamed from producer to consumer clusters.
Fig. 4.2B shows the mapping of the ResNet-18 on the architecture, where each node
of the graph in Fig. 4.2A represents a CNN layer, grouped by color according to the IFM
dimensions, and every layer is mapped on different clusters of the system, as shown in
Fig. 4.2B. The number of clusters used to map a specific layer depends on the number
of parameters of the layer. For example, Layer 22 features 2.3M parameters, requiring
40 clusters for the mapping, assuming each 256x256 IMA can store 64K parameters.

4.1.2 IMA Execution
As described in Sec. 2.1.1, the IMA subsystem communicates directly to the L1 of
the cluster, acting as a master of the TCDM interconnect. Assuming DNN parameters
of a specific layer are being pre-loaded to the non-volatile array, IMA execution is
composed of three distinct phases, as shown in Fig. 4.3. Stream-in fetches the IFM of
the layer and moves them to the input buffer of the IMA. Compute performs the input
data conversion by the DACs, the analog MVM execution on the crossbar, and the
ADCs conversion. Stream-out moves the output digital MVM result from the output
buffers to the L1 memory. Input and output buffers are duplicated to enable double
buffering, completely overlapping the cost of transfers between the L1 and the buffers
with the computation, maximizing the computational efficiency of the accelerator.

26

WiPLASH D4.3 H2020-FETOPEN-863337

Figure 4.1: Distributed data-parallel approach used for the ResNet-34 training on the
proposed massively parallel system. Batches are executed independently until the
weights update step, where they are collected and averaged before storing the final
trained model. The entire execution is repeated till the end of batches.

4.1.3 Pipelining
When the inference starts, the IFM of the first layer is streamed into the first set of clus-
ters which process it generating the OFM, which is then passed to the second set of
clusters and so on. Assuming the possibility of having large batches of images allows
for the creation of the software pipeline described in Fig. 4.2C, where different chunks
of data are processed by a different set of clusters simultaneously, fully overlapping
the data movements (i.e., in charge of the DMA) with the computation (i.e., in charge
of IMA and/or CORES). Ensuring that all pipeline stages execute in the same amount
of time is essential when creating such a pipeline structure.

4.1.4 Data Tiling
To fit IFM/OFM of large DNN models within the limited memory resources of the clus-
ters (1 MB of L1 memory is assumed in this work), we split IFM/OFM into smaller
chunks of data called tiles, processed by the clusters as soon as the input data is
transferred to the L1 memory. In particular, data tiling is always performed along the
Win and Wout dimensions for input and output, respectively. In this work, we assume a
static tiling strategy, and Win/out implicitly defines the batching dimension. Therefore,
the batches are composed of vertical slices of IFM/OFM. The other dimensions (Cin

www.wiplash.eu 27 March 31, 2023

WiPLASH D4.3 H2020-FETOPEN-863337

0
conv

1
pool

2
conv

3
conv

4
res

5
conv

6
conv

7
res

8
conv

9
conv

10
res

11
conv

12
conv

13
res

14
conv

15
conv

16
res

17
conv

18
conv

19
res

20
conv

21
conv

22
res

23
conv

24
conv

25
res

26
pool

27
FC

batch ID -> one new batch after MAX(in,compute,out)

0 1 2 3
0 1 2

4 5 6
3 4 5

0 1
0 1

2 3 4
2 3 4

0 1 2 3
0 1 2
0 1 2

0 1
0

in
compute

out
in

compute
out
in

compute
out

t

0
conv

1
pool

2
conv

Pipeline stagesC)

B)A)

Figure 4.2: A) Directed Acyclic Graph (DAG) of the ResNet-18 execution. B) Mapping
example on 512 clusters. C) High-level description of pipelining computational model.

and Hin) are, when necessary, tiled in other clusters to fit the memory requirements
(parameters mapping) or to speed up the computation (parallelization).

4.1.5 Self-Timed Execution
To implement the pipeline between the tiled structure described in Sec. 4.1.4, we
exploit a data-flow self-timed execution model. Computation in a cluster can be per-
formed by the CORES, IMA, or both in parallel. While software execution on the
CORES is synchronous, IMA execution is managed asynchronously (like DMA trans-
fers). A cluster can perform a certain computation whenever three conditions are sat-
isfied: a) Chunk N+1 from the producers can be loaded to the L1 memory, b) the
consumers are ready to accept the output data of chunk N-1, c) both IMA and CORES
are free to compute chunk N. If all the conditions are satisfied, the new iteration can
start with the following execution flow: 1) the CORE0 (i.e., master core) first waits for
the events from the input and output DMA channels and IMA, 2) the CORE0 configures
and triggers I/O DMA channels and IMA for computation of next tile 3) digital process-
ing is performed in parallel on the CORES. 4) All the CORES go to sleep, waiting for
the events described in point 1).

www.wiplash.eu 28 March 31, 2023

WiPLASH D4.3 H2020-FETOPEN-863337

L1 TCDM

ADC

Weights
crossbar

WT x IFMi =
OFMi

D
A
C

i

S
T
R
E
A
M
-
O
U
T

S
T
R
E
A
M
-
I
N

IMA

i
i
i

i

i
N
N
N

i N

Input
Buffer

i

Output Buffer

IFM0
OFM0

C
O
M
P
U
T
E

Figure 4.3: IMA execution model. Input and output data are stored in the TCDM.
Parameters have been offline pre-stored in the IMA crossbar. The datapath au-
tonomously feeds and drains data from/to outside after a lightweight streamers pro-
gramming phase by one RISC-V core.

4.2 Training

Adopting a distributed data-parallel approach, we distribute the same weight param-
eters (i.e., the global model) on each cluster, while the input image for each cluster
is different. Each cluster independently receives and processes a single image se-
quentially, performing layer by layer both the forward pass (common inference) and
the backward pass to calculate the gradient of the loss function with respect to its input
image. Then, the gradients of each layer weight tensor of each layer are collected and
averaged to compute the global update performed on each layer of the model. Finally,
the global model is updated and stored in memory for the next iteration. In our ap-
proach, Cluster 0 orchestrates the execution of the training process. Fig. 4.1 depicts
the distributed data-parallel computational model described above, while the following
sections detail every component singularly.

For this application, the cluster’s engines involved in the execution are DMA, CORES
and tensor core since the nvAIMC performs well only during the inference, where the
weights have been trained.

4.2.1 Forward
During the forward step, the input image for each cluster is processed layer-by-layer.
Considering a single cluster, the input image is loaded in the L1 memory by means of
the Cluster DMA. Then, the first layer weights are loaded using the same DMA. During
the DMA calls, which are put in the DMA queue, the cluster waits for the completion.
Then, the forward primitive of the current layer is called and is performed on the loaded
data by parallelizing its computational workload on the CORES or tensor core. Then,
the result is stored back into the global memory for the backward pass, using the DMA,
and the next layer is processed by loading the new weights. The forward pass ends
with the last layer, which stores the last layer’s prediction in the global memory. The
CORES or tensor core executes in parallel on different data and independently. At the
end of its execution, each cluster reaches a software barrier to synchronize with the
others before performing the next step.

www.wiplash.eu 29 March 31, 2023

WiPLASH D4.3 H2020-FETOPEN-863337

4.2.2 Backward
Before the backward step, the loss function (L) with respect to the ground truth label is
computed by each cluster’s CORE 0. In this step, each cluster independently loads the
label from the global memory, then computes the network’s loss and output gradient
(∂L
∂o

). Then, a synchronization barrier is launched. After the barrier, a backward step is
performed to compute the weight gradient (∂L

∂w
) and input gradient (∂L

∂i
) for each layer.

Starting from the last layer and going to the first, each cluster independently starts
by loading its output gradient and input through its DMA. This is done to compute the
gradient of the weights. Then, the gradient is stored using the DMA, and the weight
tensor of the current layer is loaded to compute the input gradient of the current layer.
Even in this case, both the weight and the input gradient computational primitives
are parallelized on the CORES, and they adopt a naı̈ve approach to minimize the L1
memory occupation. After the gradients are computed for each layer and the first layer
is reached, the backward step is complete, and a cluster synchronization barrier is
launched to synchronize all clusters before performing the weight update (again, the
flow for each gradient is: load data with DMA, wait, compute primitive, store result with
DMA, wait). Note that no input gradient is calculated when the first layer is reached,
as they are required to backpropagate the error to the previous layer.

4.2.3 Update
During the backward step, all the gradients of the weights are computed to optimize
the model, updating each layer’s parameter using the pre-computed gradient with a
given learning rule. In the case of Stochastic Gradient Descent (SGD), w = w–h ∗ dw,
where w are the weights, h is the learning rate (hyperparameter), and dw is the weight
gradient for the given layer. The weight update process is performed by first averaging
the gradients of the whole batch – i.e., all the gradients computed by each cluster are
collected, summed, and divided by the number of clusters. The update is performed
as a binary tree to speed up the process.

In our approach, Cluster 0 is the master. We consider a set of Nc clusters. The
procedure is performed layer-by-layer, and in the beginning, each Cluster loads its
weight gradient tensor computed during the last backward step. During each iteration
T = 1, .., log2(Nc), each Cluster with index Ic multiple of (Nc

(T−1)
), including Cluster 0,

collects the gradient of the following Cluster – i.e., the one with index Ic + T – and
accumulates it on its gradient value. The other clusters wait for the completion of
the task. During the first iteration, all clusters load the weights. During the second,
Cluster 0 collects the weight gradient of Cluster 1, Cluster 2 collects the weights of
Cluster 3, and so on. Then, Cluster 0 sums the gradients it just collected on its local
accumulator, and Cluster 2, 4, and so on do the same. During the fourth, Cluster
0 collects the weight gradient from Cluster 2, Cluster 4 from Cluster 6, and so on.
The process continues until only Cluster 0, and Cluster Nc-1 are active, and Cluster 0
collects Cluster Nc-1’s accumulated weight gradient (iteration Tf = log2(Nc)). Finally,
Cluster 0 owns the accumulation of all weight gradients from all Clusters on a single
accumulator. Therefore, it divides each weight gradient element by Nc to complete the
average.

During each iteration, each Cluster loads the data from the other Cluster using
its DMA, accessing the global address of the other Cluster’s accumulator. No global

www.wiplash.eu 30 March 31, 2023

WiPLASH D4.3 H2020-FETOPEN-863337

memory load/store operation is performed since all data is kept in each L1 local mem-
ory. After each iteration, a cluster synchronization barrier is launched before the next
iteration. After the weight averaging is completed for a single layer, Cluster 0 loads
the weights of the global model with DMA (always shared) and updates them with the
gradient tensor computed during the weight accumulation process. Then, it stores the
updated weights in the global memory with DMA, waits for the end of the transfer, and
starts the weight update process for the next layer.

4.2.4 Synchronization
The multi-cluster distributed training process requires a multi-cluster barrier to syn-
chronize all the Clusters when needed. Multi-Cluster Synchronization is managed by
introducing specific execution barriers, which are managed by tracking specific events.
When a Cluster completes its task, an event with ID=X is launched, and a flag is set
to track which Clusters completed the execution. Then, if the Cluster that sent the
event is different from Cluster 0, it enters sleep mode. When all Clusters complete the
execution, Cluster 0 sends an event to each Cluster to exit sleep mode, and the next
task is started.

www.wiplash.eu 31 March 31, 2023

5. Results and Discussion

We analyze the results of both selected applications (i.e., ResNet-18 inference and
ResNet-34 training) on the proposed architecture depicted in Fig. 2.1. Tab. 2.3 has
the reference for the different configurations. To extract reliable physical implemen-
tation information from the architecture, we performed the cluster’s physical imple-
mentation (down to ready for silicon layout) in 22nm FDX technology from Global
Foundries. We used Synopsys Design Compiler for physical synthesis, Cadence In-
novus for Place&Route, Siemens Questasim for extracting the value change dump
for activity annotation, and Synopsys PrimeTime for power analysis. Area, frequency,
and power figures are then scaled to a 5nm tech node more suitable for modern High-
Performance Computing (HPC) architectures.

Pros and cons of the proposed architecture configurations have been extensively
discussed in the following sections, considering the outcomes of the benchmark’s ex-
ecutions. The other configurations have been explored as intermediate results of the
design study. In particular, the single-node version is feasible only exploiting wireless,
because the routing, in the wired version does not scale with 16 chiplets.

5.1 ResNet-18 inference

Firstly, to provide insights into the sources of inefficiency and figure out an upper bound
on the performance improvement boosting the communications in such a system and
application, we analyze the mapping and latency breakdown of the Resnet-18 infer-
ence [9].

5.1.1 Initial Consideration
The first source of inefficiency (global mapping) is caused by the fact that not all the
clusters are used for mapping network parameters. In our mapping, 322 clusters out of
512 have been exploited. This is an intrinsic characteristic of all systolic architectures
exploiting pipelining as a computational model, worsened by the constraints in terms
of mapping imposed by IMA. However, this has only an effect on the area efficiency
since, in such regular architecture, each cluster can be easily clock and power gated,
minimizing the impact on energy efficiency. The second source of inefficiency (local
mapping) is caused by the fact that even if a specific cluster is being used, the mapping
on it might under-utilize the analog and digital resources. In some cases, parameters
cannot fill the whole IMA; in other cases, the array is not used at all. The same happens
for digital computing, e.g., in the case of purely digital layers. A possible solution to
mitigate this degradation could be to integrate heterogeneous clusters configured to fit

32

WiPLASH D4.3 H2020-FETOPEN-863337

better all the possibilities, such as IMA and a single CORE (i.e., analog clusters) or 16
CORES without IMA (i.e., digital clusters).

The third source of inefficiency is caused by the pipeline unbalance. Different lay-
ers feature different computational efficiency, where the layer groups are defined de-
pending on the IFM dimension. Some layer groups feature significant area efficiency,
thanks to large IFM/OFM, implying high data reuse (i.e., several iterations over the
same parameters statically mapped on the IMA).

This study reveals that, unless we would boost communications exploiting wireless
features, the main source of inefficiencies, considering this kind of applications and
general-purpose architecture AIMC-based architectures, is the non-ideal mapping and
the network characteristic. Fig. 5.2 should be intended to understand the breakdown
of the inefficiencies in a single chiplet architecture, with all the communications inside
the chip. Therefore, the upper bound on this application for the performance is not
theoretical but represented by the intra-layer unbalance.

Different considerations should be made for the ResNet-34 training benchmark.

5.1.2 Design Space Exploration
We analyze up to six wireless solutions, changing the wireless bandwidth and the
number of clusters per chiplet. The wireless configurations have been introduced in
Sec. 2.2. The wireless solutions have an incremental wireless exploitation, replacing
the off-chip interconnect wired technologies.Fig. 5.3 describes the DSE, figuring out
the performance in Tera Operations Per Second (TOPS) and the execution efficiency
with respect to reference communications.

In particular, Fig. 5.3A) fixes the wireless bandwidth to 512 Gbit/s, and measures
the performance dropping while increasing the number of chiplets. Therefore, by in-
creasing the number of chiplets in the system but fixing the number of clusters, wired
solution starts dropping performance while moving to multi-node architecture commu-
nicating via PCIe. Anyway, replacing the PCIe with the wireless link (i.e., wireless 0),
the whole execution does not benefit from it because the nodes communicate with
each other with a single-single channel as described in Sec. 2.2. On the other hand,
by replacing the HBI interconnects from every communication on the same interposer,
the execution time decreases significantly, as we can see from the wireless 1 bars.
The combination of wireless in replaces of HBI and PCIe increases the performance
and reduces the drops while scaling down the complexity of the single chiplet.

Fig. 5.3B) fixes the architecture to 16 chiplets, and measures the performance im-
provement while increasing the wireless bandwidth from 64 Gbit/s to highest obtain-
able with graphene-based technology, as figured out from this project of 512 Tbit/s. As
we can see, what we see is that we actually need that bandwidth on this application,
especially for the multi-node configurations proposed.

Fig. 5.3C) shows the above-mentioned trend, fixing the wireless architecture to the
wireless 1, it measures the efficiency of scaling down the chiplet complexity from 256
to 32 clusters per chiplet. In particular, with 16 chiplets, the efficiency with respect to
the 1 chiplet solution is around 63% at 512 Gbit/s and 87% at 8 Tbit/s. The reason for
this enormous bandwidth is to demonstrate the trend, where the performance, after 1
Tbit/s is no longer limited by chiplet-to-chiplet communication.This plot shows up that
the wireless helps close the performance gap moving from System-on-Chip (SoC) to
SiP and beyond to multi-SiP.

www.wiplash.eu 33 March 31, 2023

WiPLASH D4.3 H2020-FETOPEN-863337

Finally, Fig. 5.3D) measures the system’s efficiency in both wired and wireless 2
the entire execution time against the ideal communications infrastructure, i.e., no con-
flicts, no latencies, infinite bandwidths, varying the bandwidth up to about 8 Tbit/s. This
enormous bandwidth is to demonstrate that as we have anticipated in Sec. 5.1.1, the
bandwidth is a limitation up to 1 Tbit/s. Then, the limitation is no longer on the chiplet-
to-chilpet communications. This figure shows also that the execution is still below the
upper bound of 46% due to the communications overheads. Comparing against a
full on-chip version (i.e., no chip-to-chip communications and with all the data stored
in the on-chip memory), the execution efficiency is around 86%, demonstrating the
low level of overhead due to off-chip communications thanks to the wireless channels.
The overhead with respect the ideal communications is due to on-chip communica-
tion conflicts, finite bandwidth, and non-zero latencies that cannot be avoided without
significantly increasing area and power consumption.

Fig. 5.4 reports the area efficiency of this application in all the configurations, in-
creasing the number of chiplets in the case of 512 Gbit/s of wireless bandwidth. As we
can see, for up to four chiplets, the efficiency is comparable between configurations.
This is because the number of I/O hubs and HBMs do not change. On the other hand,
the best efficiency when we move to more than four chiplets is always on the multi-
node configuration, which has a very low latency execution having private channels
even if it is still multiple I/O hub with respect to the single-node configuration. In this
last, in fact, the I/O hub area is not dominant with respect to the HBM area and for this
reason, the efficiency is still poor. Worth to be noted is that the best efficiency (as for
the performance) for single-node configurations is wireless 5, which does not have the
I/O hub but only single-single channels between every chiplet and memories.

5.2 ResNet-34 training

Training benchmark hits our foreseen risk at the beginning of the project, introducing
many hours of simulations per test. This is due to the GVSoC simulator, which ac-
curately simulates every instruction on each core. For these reasons, we have used,
in this case, a combination of simulated kernel results and analytical models to derive
the final results on the entire ResNet-34 training. The kernel executions have extracted
the optimized execution of standard 2D convolutions and residual layers, which are the
main blocks of the network. Moreover, due to the extreme regularity of the computa-
tional model, we have extracted the DMA performance, characterizing the transfers,
and we have used these synthetic results to model the entire network and training
phase executions. For this evaluation, we have used wireless 1 architecture configu-
ration, which has been demonstrated as more performant in the previous evaluation.

We also considered the effect of a state-of-the-art tensor-core instead of using the
RISC-V cores to execute convolution, linear and residual layers. The latency is per
batch. This means that is an average latency per cluster as we have described in
Sec. 4.2.

Fig. 5.5 shows the speed-up comparing wired and wireless in both cores and ac-
celerator cases varying the wireless bandwidth. The first consideration is that with low
bandwidth, even if the accelerator is 12.5× faster than 16 cores, the communications,
which are overlapped with the computation, are dominant in the total amount of cy-
cles. Increasing the bandwidth, as we can see, the speed-up increases and mostly for

www.wiplash.eu 34 March 31, 2023

WiPLASH D4.3 H2020-FETOPEN-863337

accelerator because the communication part is more dominant than the case of cores.
We reach a speed-up of 6.3× when we use 512 clusters and the accelerator with
bandwidth 1 Tbit/s. After that value, as we have already seen in the inference case,
the limitation is no longer on the wireless communications but on other communication
devices, such as the AXI4 crossbar in the chiplets. With the cores the speed-up is less
than with the accelerator because the execution time part in the overall amount of time
is bigger and more dominant, but it is still 2.8×.

Fig. 5.6 represents the area efficiency with wired, wireless 1 configurations, with
wireless at 512 Gbit/s. the area efficiency decreases, scaling down the number of
clusters per chiplet. This is because communication limits the performance while the
operations linearly scale up with the number of clusters since the number of clusters
coincides with the batch size. This effect is more severe when we go to multi-node
configuration (i.e., more than 4 chiplets available) since the communication is slower,
concentrating the data movement via a low bandwidth link.

5.3 Milestones and final remarks

With our explorations, we have obtained, in the inference benchmark, up to 2.4×
and 2.2×, and for the training 3.2× and 3.1× in performance and area efficiency,
respectively, considering wireless 1 configuration and 256 Gbit/s as wireless band-
width. While considering 512 Gbit/s as wireless bandwidth, we have obtained 3.2×
and 3×, and 6.4× and 6.4× respectively in performance and area efficiency in infer-
ence and training benchmarks respectively. Tab. 5.1 summarizes the results in terms
of performance and efficiency considering wired and wireless 1 configurations, with
both bandwidths.

www.wiplash.eu 35 March 31, 2023

WiPLASH D4.3 H2020-FETOPEN-863337

M0 M2

M1 M3

M4 M6

M5 M7

H0

M8 M10

M9 M11

M12 M14

M13 M15

C8 C10

C9 C11

C12 C14

C13 C15

C0 C2

C1 C3

C4 C6

C5 C7

W
ire

le
ss

 3

W
ire

le
ss

 4

C0 C2

C1 C3

C4 C6

C5 C7

C8 C10

C9 C11

C12 C14

C13 C15

M0 M2

M1 M3

M4 M6

M5 M7

M8 M10

M9 M11

M12 M14

M13 M15

W
ire

le
ss

 5

H1 M7 M6M4 M5

C4

C5 C7

C6

H2 M11 M10M8 M9

C8

C9 C11

C10

H3 M15 M14M12 M13

C12

C13 C15

C14

H0 M3 M2M0 M1

C0

C1 C3

C2

Wireless 0 Wireless 1

Wireless 2 Hybrid 0

Figure 5.1: Proposed architecture configuration for wired, wireless 0, wireless 1, wire-
less 2, and hybrid 0 on top. Every color represents a different frequency channel.
Proposed architecture configuration for wireless 3, wireless 4, and hybrid 1 in the
middle. Communications between chiplets are allowed only via I/O hub. Proposed
architecture configuration for wireless 5 on the bottom. Every node has its I/O hub.
Communications between chiplets and nodes are allowed only via I/O hub. They are
multi-node and single-node architecture, respectively, with up to 16 computing chiplets
and 16 HBMs. The configurations details are reported in Tab. 2.3.

www.wiplash.eu 36 March 31, 2023

WiPLASH D4.3 H2020-FETOPEN-863337

ideal global
mapping

local
mapping

intra-layer
unbalance

communication0

100

200

300

400

500

Pe
rf
or
ma
nc
e
[T
OP
S]

1.6x

3.0x

5.0x 1.2x

4.7x
23.8x 28.4x

Figure 5.2: Performance degradation considering non-idealities due to static mapping,
network topology, and communication.

Figure 5.3: ResNet-18 inference results comparing ideal communication, reference
wired and several wireless configuration as described in Tab. 2.3.

www.wiplash.eu 37 March 31, 2023

WiPLASH D4.3 H2020-FETOPEN-863337

Figure 5.4: Area efficiency of ResNet-18 inference on wired and wireless configura-
tions described in Tab. 2.3.

Figure 5.5: Speed-up against wired configuration executing ResNet-34 training in wire-
less 1 and with 16 chiplets, considering the 2D convolution, linear and residual layers
computed by either RISC-V DSP cores and a state-of-the-art tensor core and varying
the wireless bandwidth.

www.wiplash.eu 38 March 31, 2023

WiPLASH D4.3 H2020-FETOPEN-863337

Figure 5.6: Area efficiency of ResNet-34 training on wired and wireless main configu-
ration, with 512 clusters and 512 Gbit/s of wireless bandwidth and considering the 2D
convolution, linear and residual layers computed by either RISC-V DSP cores and a
state-of-the-art tensor core.

www.wiplash.eu 39 March 31, 2023

WiPLASH D4.3 H2020-FETOPEN-863337

Table 5.1: Results table comparing wired and wireless 1 in both inference and training
benchmarks with 16 computing chiplets.

M
etric

U
nit

W
ired

W
ireless

256
G

bit/s
W

ireless
512

Tbit/s
inference

training
inference

training
inference

training
inference

training
Technology

node
nm

5
A

rea
m

m
2

3380
3371

Perform
ance

TO
P

S
FLO

P
S

3.15
1.3

7.56
4.1

10.14
8.35

Latency
m

s
31.02

14395
12.9

4498
9.6

2250
A

rea
E

fficiency
G

O
P

S
/m

m
2

FLO
P

S
/m

m
2

0.93
0.39

2.1
1.24

2.82
2.48

www.wiplash.eu 40 March 31, 2023

6. Conclusion

We presented an nvAIMC-based multi-tile heterogeneous architecture, analyzing the
performance peaks when computing typical CNN workloads and providing insights
about the limitations caused by the finite bandwidth of classical communication chan-
nels, their rigidity, and the physical size of the analog devices. In this context, the per-
formance and plasticity of emerging on-chip wireless communication paradigms can
provide a solid solution in terms of computation performance, especially considering
real-life applications with the need of splitting the computation along different nvAIMC.

41

Bibliography

[1] S. Pati, S. Aga, M. Islam, N. Jayasena, and M. D. Sinclair, “Computation vs. Communication Scal-
ing for Future Transformers on Future Hardware,” 2023.

[2] S. Naffziger, K. Lepak, M. Paraschou, and M. Subramony, “2.2 AMD Chiplet Architecture for High-
Performance Server and Desktop Products,” in 2020 IEEE International Solid- State Circuits Con-
ference - (ISSCC), pp. 44–45, 2020.

[3] “AMD Explains the Economics Behind Chiplets for GPUs.” https://www.techpowerup.com/
301071/amd-explains-the-economics-behind-chiplets-for-gpus. Accessed: 2023-
02.

[4] “Meteor Lake and Arrow Lake Intel Next-Gen 3D Client Architecture Platform with Foveros.”
https://hc34.hotchips.org. Accessed: 2023-02.

[5] F. Zaruba, F. Schuiki, and L. Benini, “Manticore: A 4096-core RISC-V Chiplet Architecture for
Ultra-efficient Floating-point Computing,” 2020.

[6] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang, B. Keller, A. Klinefelter,
N. Pinckney, P. Raina, S. G. Tell, Y. Zhang, W. J. Dally, J. Emer, C. T. Gray, B. Khailany, and S. W.
Keckler, “Simba: Scaling Deep-Learning Inference with Multi-Chip-Module-Based Architecture,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, MI-
CRO ’52, (New York, NY, USA), p. 14–27, Association for Computing Machinery, 2019.

[7] P. Vivet, E. Guthmuller, Y. Thonnart, G. Pillonnet, G. Moritz, I. Miro-Panadès, C. Fuguet, J. Du-
rupt, C. Bernard, D. Varreau, J. Pontes, S. Thuries, D. Coriat, M. Harrand, D. Dutoit, D. Lattard,
L. Arnaud, J. Charbonnier, P. Coudrain, A. Garnier, F. Berger, A. Gueugnot, A. Greiner, Q. Me-
unier, A. Farcy, A. Arriordaz, S. Cheramy, and F. Clermidy, “2.3 A 220GOPS 96-Core Processor
with 6 Chiplets 3D-Stacked on an Active Interposer Offering 0.6ns/mm Latency, 3Tb/s/mm2 Inter-
Chiplet Interconnects and 156mW/mm2@ 82-Peak-Efficiency DC-DC Converters,” in 2020 IEEE
International Solid- State Circuits Conference - (ISSCC), pp. 46–48, 2020.

[8] R. Medina, J. Kein, G. Ansaloni, M. Zapater, S. Abadal, E. Alarcón, and D. Atienza, “System-Level
Exploration of In-Package Wireless Communication for Multi-Chiplet Platforms,” in Proceedings of
the 28th Asia and South Pacific Design Automation Conference, ASPDAC ’23, (New York, NY,
USA), p. 561–566, Association for Computing Machinery, 2023.

[9] N. Bruschi, G. Tagliavini, A. Garofalo, F. Conti, I. Boybat, L. Benini, and D. Rossi, “End-to-End DNN
Inference on a Massively Parallel Analog In Memory Computing Architecture,” 2022.

[10] N. Bruschi, G. Tagliavini, F. Conti, S. Abadal, A. Cabellos-Aparicio, E. Alarcón, G. Karunaratne,
I. Boybat, L. Benini, and D. Rossi, “Scale up your In-Memory Accelerator: Leveraging Wireless-on-
Chip Communication for AIMC-based CNN Inference,” in 2022 IEEE 4th International Conference
on Artificial Intelligence Circuits and Systems (AICAS), pp. 170–173, 2022.

[11] “AMD EPYC Server Processors.” https://www.amd.com/en/processors/
epyc-server-cpu-family. Accessed: 2023-02.

[12] “Data Center GPUs for Servers.” https://www.nvidia.com/en-us/data-center/
data-center-gpus/. Accessed: 2023-02.

[13] M. Gautschi et al., “Near-Threshold RISC-V Core With DSP Extensions for Scalable IoT Endpoint
Devices,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 10,
pp. 2700–2713, 2017.

42

https://www.techpowerup.com/301071/amd-explains-the-economics-behind-chiplets-for-gpus
https://www.techpowerup.com/301071/amd-explains-the-economics-behind-chiplets-for-gpus
https://hc34.hotchips.org
https://www.amd.com/en/processors/epyc-server-cpu-family
https://www.amd.com/en/processors/epyc-server-cpu-family
https://www.nvidia.com/en-us/data-center/data-center-gpus/
https://www.nvidia.com/en-us/data-center/data-center-gpus/

WiPLASH D4.3 H2020-FETOPEN-863337

[14] A. Garofalo et al., “A Heterogeneous In-Memory Computing Cluster for Flexible End-to-End Infer-
ence of Real-World Deep Neural Networks,” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, vol. 12, no. 2, pp. 422–435, 2022.

[15] Y. Tortorella, L. Bertaccini, D. Rossi, L. Benini, and F. Conti, “Redmule: A compact fp16 matrix-
multiplication accelerator for adaptive deep learning on risc-v-based ultra-low-power socs,” in Pro-
ceedings of the 2022 Conference amp; Exhibition on Design, Automation amp; Test in Europe,
DATE ’22, (Leuven, BEL), p. 1099–1102, European Design and Automation Association, 2022.

[16] R. Khaddam-Aljameh et al., “HERMES-Core—A 1.59-TOPS/mm2 PCM on 14-nm CMOS In-
Memory Compute Core Using 300-ps/LSB Linearized CCO-Based ADCs,” IEEE Journal of Solid-
State Circuits, vol. 57, no. 4, pp. 1027–1038, 2022.

[17] A. Kurth et al., “An Open-Source Platform for High-Performance Non-Coherent On-Chip Commu-
nication,” IEEE Transactions on Computers, pp. 1–1, 2021.

[18] “Synopsys High-Bandwidth Interconnect (HBI) PHY IP.” https://www.synopsys.com/dw/
ipdir.php?ds=dwc_hbi_phy. Accessed: 2023-02.

[19] “HBM2E.” https://www.micron.com/products/ultra-bandwidth-solutions/hbm2e. Ac-
cessed: 2023-02.

[20] “Synopsys Die-to-Die IP Solutions.” https://www.synopsys.com/designware-ip/
interface-ip/die-to-die.html. Accessed: 2023-02.

[21] S. Abadal, R. Guirado, H. Taghvaee, A. Jain, E. P. d. Santana, P. H. Bolivar, M. Saeed, R. Ne-
gra, Z. Wang, K.-T. Wang, M. C. Lemme, J. Klein, M. Zapater, A. Levisse, D. Atienza, D. Rossi,
F. Conti, M. Dazzi, G. Karunaratne, I. Boybat, and A. Sebastian, “Graphene-based Wireless Agile
Interconnects for Massive Heterogeneous Multi-chip Processors,” IEEE Wireless Communications,
pp. 1–8, 2022.

[22] Y. Chen et al., “Channel modeling and characterization for wireless networks-on-chip communica-
tions in the millimeter wave and terahertz bands,” IEEE Transactions on Molecular, Biological and
Multi-Scale Communications, vol. 5, no. 1, pp. 30–43, 2019.

[23] R. Guirado et al., “Dataflow-Architecture Co-Design for 2.5-D DNN Accelerators using Wireless
Network-on-Package,” in 2021 26th Asia and South Pacific Design Automation Conference (ASP-
DAC), pp. 806–812, IEEE, 2021.

[24] N. Bruschi et al., “GVSoC: A Highly Configurable, Fast and Accurate Full-Platform Simulator for
RISC-V based IoT Processors,” in 2021 IEEE 39th International Conference on Computer Design
(ICCD), pp. 409–416, 2021.

www.wiplash.eu 43 March 31, 2023

https://www.synopsys.com/dw/ipdir.php?ds=dwc_hbi_phy
https://www.synopsys.com/dw/ipdir.php?ds=dwc_hbi_phy
https://www.micron.com/products/ultra-bandwidth-solutions/hbm2e
https://www.synopsys.com/designware-ip/interface-ip/die-to-die.html
https://www.synopsys.com/designware-ip/interface-ip/die-to-die.html

	Introduction
	Massively Parallel Heterogeneous System-in-Package Architecture
	System-in-Package Architecture
	Heterogeneous Accelerator
	I/O Hub

	Wireless Graphene-based Links
	Chiplet integration

	Simulation Infrastructure and Methodology
	Time Modeling
	Performance Assessment
	Methodology

	Computational models
	Inference
	Static Layer Mapping
	IMA Execution
	Pipelining
	Data Tiling
	Self-Timed Execution

	Training
	Forward
	Backward
	Update
	Synchronization

	Results and Discussion
	ResNet-18 inference
	Initial Consideration
	Design Space Exploration

	ResNet-34 training
	Milestones and final remarks

	Conclusion

