

Horizon 2020 Program (2014-2020)
FET-Open Novel ideas for radically new technologies

FETOPEN-01-2018-2019-2020

Architecting More than Moore – Wireless Plasticity for
Massive Heterogeneous Computer Architectures1

D5.4: Release of the open-source simulator
with benchmark architectures

WP5 - Multi-scale Simulation

Contractual Date of Delivery 31/12/2022

Actual Date of Delivery 21/12/2022

Deliverable Security Class Public

Editor Giovanni Ansaloni (EPFL)

Contributors EPFL (Leader), IBM

Quality Assurance Sergi Abadal (UPC)
Irem Boybat (IBM)

1 This project is supported by the European Commission under the Horizon 2020 Program with Grant agreement
no: 863337

Ref. Ares(2022)8900194 - 21/12/2022

WiPLASH D5.4 H2020-FETOPEN-863337

www.wiplash.eu 2 December 21st, 2022

Document Revisions & Quality Assurance
Deliverable Number D5.4
Deliverable Responsible EPFL
Work Package WP5
Main Editor Giovanni Ansaloni

Internal Reviewers

1. Irem Boybat (IBM)
2. Sergi Abadal (UPC)

Revisions

Version Date By Overview
0.1 21/11/2022 Giovanni Ansaloni Document created
0.2 02/12/2022 Giovanni Ansaloni,

Joshua Klein,
Rafael Medina

Content review

0.3 20/12/2022 Irem Boybat,
Giovanni Ansaloni

Internal review by Irem Boybat

1.0 21/12/2022 Sergi Abadal,
Giovanni Ansaloni

Internal review by Sergi Abadal

Legal Disclaimer
The information in this document is provided “as is”, and no guarantee or warranty is
given that the information is fit for any particular purpose. The above referenced
consortium members shall have no liability to third parties for damages of any kind
including without limitation direct, special, indirect, or consequential damages that may
result from the use of these materials subject to any liability which is mandatory due to
applicable law. © 2022 by WiPLASH Consortium.

WiPLASH D5.4 H2020-FETOPEN-863337

www.wiplash.eu 3 December 21st, 2022

Executive Summary
This deliverable details the open sourcing of the code base developed in WP5. The
resulting infrastructure was employed for performing system-level simulations
validating of the technologies at the focus of the WiPLASH project, namely Analog In-
Memory Computing (AIMC) cores and in-package wireless transmission. It is provided
as self-contained forks of the gem5-X simulator, embedding custom extensions
emulating AIMCs and wireless links.
The deliverable provides a report detailing the repositories structure (including a
discussion on the employed license). Moreover, it describes how repositories can be
used to perform system-level explorations of the capabilities of WiPLASH technologies,
and how these can be extended and/or further refined, both in future releases by the
consortium partners beyond the timeframe of WiPLASH, and by external users.
Repositories and technical documentation, including README files and example
applications, are available at github.com/gem5-X/ALPINE and github.com/gem5-X/On-
Chip-Wireless. As stated in the Description of the Action (DoA) , we provide them as
open source and free-of-charge according to the BSD 3-clause license. We ask users
to reference our relevant works2,3 when using them in future endeavors.

2 Klein, Joshua Alexander Harrison, et al. “ALPINE: Analog In-Memory Acceleration with Tight
Processor Integration for Deep Learning.” IEEE Transactions on Computers, 2023.
3 Medina Morillas, Rafael, et al. "System-Level Exploration of In-Package Wireless Communication
for Multi-Chiplet Platforms." Asia and South Pacific Design Automation Conference (ASPDAC),
2023.

WiPLASH D5.4 H2020-FETOPEN-863337

www.wiplash.eu 4 December 21st, 2022

Abbreviations and Acronyms
AIMC Analog In-Memory Computing
CPU Central Processing Unit
ISA Instruction Set Architecture
MAC Medium Access Protocol
MLP Multi-Layer Perceptron
MVM Matrix-Vector Multiplication
SoC System on Chip
WP Work Package

WiPLASH D5.4 H2020-FETOPEN-863337

www.wiplash.eu 5 December 21st, 2022

The WiPLASH consortium is composed by:

UPC Coordinator Spain
IBM Beneficiary Switzerland
UNIBO Beneficiary Italy
EPFL Beneficiary Switzerland
AMO Beneficiary Germany
UoS Beneficiary Germany
RWTH Beneficiary Germany

WiPLASH D5.4 H2020-FETOPEN-863337

www.wiplash.eu 6 December 21st, 2022

Table of Contents
DOCUMENT REVISIONS & QUALITY ASSURANCE 2
EXECUTIVE SUMMARY 3
ABBREVIATIONS AND ACRONYMS 4
TABLE OF CONTENTS 6
LIST OF FIGURES 7
LIST OF TABLES 8
1 INTRODUCTION 9

1.1 DELIVERABLE CONTENT AND RATIONALE 9
1.2 ORGANIZATION OF OPEN-SOURCE REPOSITORIES 10
1.3 LICENSING ERROR! BOOKMARK NOT DEFINED.

2 SETTING UP A GEM5-X ENVIRONMENT 12
2.1 FRAMEWORK SET-UP 12
2.2 PERFORMING A FULL SYSTEM SIMULATION 12

3 ALPINE: ANALOG IN-MEMORY COMPUTING TILE MODEL AND
INTERFACES 14

3.1 CONFIGURATION PARAMETERS 14
3.2 ALPINE AIMC TILE MODEL IMPLEMENTATION 16
3.3 AIMCLIB 19
3.4 ALPINE SAMPLE APPLICATION 19

4 ON-CHIP WIRELESS MODULE AND SYSTEM INTEGRATION 22
4.1 RUNNING GEM5-X FULL SYSTEM MODE WITH WIRELESS EXTENSIONS 23
4.2 ON-CHIP-WIRELESS MODULE IMPLEMENTATION FILES 25
4.3 EXAMPLE APPLICATION 25

5 CONCLUSIONS AND PERSPECTIVES 27

WiPLASH D5.4 H2020-FETOPEN-863337

www.wiplash.eu 7 December 21st, 2022

List of Figures

Figure 1: Gem5-X github organization, containing the “On-Chip-Wireless” and
“ALPINE” repositories. Available at: github.com/gem5-X. 11

Figure 2: Aggregate run-time for running both digital reference MLP and its AIMC-
enabled counterpart, for two systems with different capabilities. “DIG” refers to the
digital reference application while “ANA” refers to the analogue AIMC-tile enabled
application. Case numbers corresponds to different architectural arrangements, as
specified in Klein et al., 2023. .. 14

Figure 3: Speed-up over ideal interconnect of token passing and exponential
backoff MAC protocols, for different link bandwidths and three representative
applications. Performance over UCIe inter-chiplet wired link is also presented, for
reference. ... 22

Figure 4: Timing diagram of the token passing protocol. 23

Figure 5: Timing diagram showing the behavior of the exponential backoff protocol
under successful transmissions (green ticks) and collisions (red crosses). 23

WiPLASH D5.4 H2020-FETOPEN-863337

www.wiplash.eu 8 December 21st, 2022

List of Tables

Table 1: ALPINE custom instructions .. 16

WiPLASH D5.4 H2020-FETOPEN-863337

www.wiplash.eu 9 December 21st, 2022

1 Introduction

1.1 Deliverable content and rationale
The focus of Work Package 5 (WP5) is the development of a novel system
simulation framework, instrumental for assessing the impact of the innovations
pursued by the WiPLASH project from a system- and application-wide perspective.
In particular, the framework allows to quantify the benefits deriving from the use of
nanoantennae for on-chip and in-package communication, and that of Analog In-
Memory Computing (AIMC) tiles for speeding up computation.
As such, WP5 is characterized by two main end-points. The first end-point is the
insights gained by the system explorations, detailed in D5.1/D5.2/D5.3 and in the
scientific publications mentioned in Section 1.3. The second is the system simulation
environments built to perform such explorations, described in this document.
Our efforts have resulted, for the duration of the project, in several design iterations,
which allowed to refine the simulation infrastructure and to deepen explorations.
Intermediate steps in this process have been reported in previous deliverables of
WP5:

• D5.1 first introduced our approach and the envisioned strategy to embody it.
• D5.2 presented preliminary implementation of AIMC and wireless system

simulations, and presented initial explorations.
• D5.3 introduced more general and flexible implementations in our platforms,

including the possibility to instantiate wireless communication links between
any architectural component in a simulated system. It also provides
extensive experimental evidence on the benefit of the WiPLASH
innovations, targeting a wide set of applications.

In this light, D5.4 reports the open-sourcing of the developed framework, and
describe the related documentation which will allow third parties to assess the
benefit of AIMC acceleration and in-package wireless communication, replicating
and building on our findings.
Full system simulations in WiPLASH’s WP5 are enabled by extending the gem5-X
framework4 (itself based on the widely adopted gem5 simulator5,6) with dedicated
custom extensions. In this way, consortium partners are able to leverage the
capabilities of gem5-X, such as support for the Linux operating systems, support for
multiple cores and complex memory hierarchies, hardware validation of computing
and storage components. At the same, the modular and expandable structure of
gem5-X allowed us to develop dedicated extensions for the emulation of AIMC tiles
and in-package wireless links, incorporating the hardware characterization
undergone in WPs 1-4.

4 Qureshi, Yasir Mahmood, et al. "Gem5-x: A many-core heterogeneous simulation platform for
architectural exploration and optimization." ACM Transactions on Architecture and Code
Optimization (TACO) 18.4 (2021): 1-27.
5 Binkert, Nathan, et al. "The gem5 simulator." ACM SIGARCH computer architecture news 39.2
(2011): 1-7.
6 Lowe-Power, Jason, et al. "The gem5 simulator: Version 20.0+." arXiv preprint arXiv:2007.03152
(2020).

WiPLASH D5.4 H2020-FETOPEN-863337

www.wiplash.eu 10 December 21st, 2022

1.2 Organization of open-source repositories
The resulting frameworks have been open-sourced in the form of github
repositories, released as part of the gem5-X organization (github.com/gem5-X), as
shown in Figure 1.

• The “On-chip-Wireless” repository, available at github.com/gem5-X/On-Chip-
Wireless refers to the extension implementing nanoantennae, and allows to
specify systems having in-package wireless links.

• Similarly, the “ALPINE” repository, available at github.com/gem5-X/ALPINE
contains all material related to the emulation of systems embedding AIMC as
tightly coupled accelerators.

Repositories are self-contained. In particular, each of them embeds a full installation
of gem5-X version 2.1. This approach future-proofs the released code base, as the
proper functionality of the developed extensions in not dependent on future changes
in gem5 and/or gem5-X. Given the rapid release cycle of gem5/gem5-X, such
aspect is particularly important for the long-term stability of the code release.
The repositories released in the context of the WiPLASH project co-exist with other
efforts in the gem5-X organization. We see this as an added value, as gem5-X is an
evolving ecosystem of system simulation solutions for assessing novel software and
hardware technologies. In this context, we are confident this ecosystem will be very
relevant for industry and academia alike, in no small part thanks to the solutions
developed in WiPLASH’s WP5.
Repositories present the following content:

• Installation files for the gem5-X system simulator.
• Dedicated extensions (implemented as architectural modules) pertaining to

in-package wireless communication or analog in-memory computing,
respectively.

• Benchmark applications, showcasing examples of the use of the above-
mentioned extensions.

• Software support libraries to encapsulate low-level routines and in-line
assembly code, easing the development of new applications by future users.

• Technical manuals illustrating how to set up and execute full system
simulation. The manual borrows from the gem5-X documentation, but
provides additional information regarding each extension.

1.3 Licensing
All material is provided under the BSD-3-Clause license7. This very permissive
license allows redistribution and use of the content of the repositories in source and
binary forms, with or without modification, as long as the following conditions are
met:

• Redistributions of source code or binaries must retain the copyright notice

7 The 3-Clause BSD license: opensource.org/licenses/BSD-3-Clause.

WiPLASH D5.4 H2020-FETOPEN-863337

www.wiplash.eu 11 December 21st, 2022

• Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

Such license is also used for the gem5 and gem5-X simulation environments,
minimizing the adoption effort related to licensing for potential users.

Figure 1: Gem5-X github organization, containing the “On-Chip-Wireless” and

“ALPINE” repositories. Available at: github.com/gem5-X.

In addition, we ask users to reference our relevant publications when extending our
works:

• For the “ALPINE” repository:
Klein, Joshua Alexander Harrison, et al. “ALPINE: Analog In-Memory
Acceleration with Tight Processor Integration for Deep Learning.” IEEE
Transactions on Computers, 2023.

• For the “On-Chip-Wireless” repository:
Medina Morillas, Rafael, et al. "System-Level Exploration of In-Package Wireless
Communication for Multi-Chiplet Platforms." Asia and South Pacific Design
Automation Conference (ASPDAC), 2023.

WiPLASH D5.4 H2020-FETOPEN-863337

www.wiplash.eu 12 December 21st, 2022

2 Setting up a gem5-X environment

The following steps are common for setting up either repository (or when performing
a set-up of the main gem5-X environment). They are reported here, only once, for
brevity.

2.1 Framework set-up

First, the simulator source files have to be cloned, using
git clone https://github.com/gem5-X/ALPINE.git

or
git clone https://github.com/gem5-X/On−Chip−Wireless.git

for AIMC or wireless extensions, respectively.
Then, components of the simulated software stack required for full system
simulation (bootloader, kernel binary, disk image containing Ubuntu Linux) are
obtained by registering for gem5-X at esl.epfl.ch/gem5-x to obtain a download link.
The corresponding tar file should be decompressed as follows:
tar −zxvf fullsystemimages.tar.gz

Furthermore, the software components (full system images) should be linked to the
simulator by setting the appropriate environment variables:
cd <path_to_gem5-X>

./apply-patch.sh <PATH_TO_FULL_SYSTEM_IMAGES>

If running on an Ubuntu-based host system, the following prerequisites need to be
installed before generating the device tree binaries.
sudo apt-get install gcc-arm-linux-gnueabihf gcc-aarch64-
linux-gnu

sudo apt-get install device-tree-compiler

To finish the set-up, the device tree must be compiled as follows:
cd <path_to_gem5−X>

make −C system/arm/dt

In the case of the AIMC extension (ALPINE repository), some configuration
parameters pertaining to the accelerator must be defined before compiling the
framework. They are detailed in Section 3.1.

2.2 Performing a full system simulation
Here we report the basic steps to define a gem5-X system and initiate a simulation.
An ARM gem5 binary is built as follows:
cd <path_to_gem5-X>/

scons build/ARM/gem5.fast

WiPLASH D5.4 H2020-FETOPEN-863337

www.wiplash.eu 13 December 21st, 2022

The build command, above, relies on python 2.7.5 and SCons 3.0.0. We provide a
docker file to install these dependencies. Details on how to use it retrieve and use it
are provided in the frameworks technical manuals, available in each repository.
Once the process above finishes, a simulation can be launched by defining a system
and the disk images. An example of last step is provided below.
cd <path_to_gem5-X>/

./build/ARM/gem5.fast\
 --remote-gdb-port=0 \
 -d /path/to/your/output/directory \
 configs/example/fs.py \
 --cpu-clock=1GHz \
 --kernel=vmlinux \
 --machine-type=VExpress_GEM5_V1 \
 --dtb-file=<full_path_to_gem5-X>/system/arm/dt/
 armv8_gem5_v1_1cpu.dtb \
 -n 1 \
 --disk-image=gem5_ubuntu16.img \
 --caches \
 --l2cache \
 --l1i_size=32kB \
 --l1d_size=32kB \
 --l2_size=1MB \
 --l2_assoc=2 \
 --mem-type=DDR4_2400_4x16 \
 --mem-ranks=4 \
 --mem-size=4GB \
 --sys-clock=1600MHz

The command above starts the simulation of a system with one core running at
1GHz, and the specified size/characteristics of L1, L2 and main memory, mounting
the provided Ubuntu disk image.
Users can interact with the simulation by connecting via telnet:
telnet localhost 3456

In this way, users can launch applications and profile their execution. Applications
should be compatible with the ARM ISA. Usually this is achieved by cross-compiling
them on the host machine.
The technical manuals provide further details on these set-up steps. These includes
a description on how to use checkpointing to decrease simulation time, and how to
employ profiling to gather run-time information of the simulated system and
application.

WiPLASH D5.4 H2020-FETOPEN-863337

www.wiplash.eu 14 December 21st, 2022

3 ALPINE: Analog In-Memory Computing Tile Model and
Interfaces

In this chapter, we describe how to retrieve, utilize, and program applications for the
ALPINE Analog In-Memory Computing extension of gem5-X. This extension was
the employed for the exploration at the core of our authored paper titled “ALPINE:
Analog In-Memory Acceleration with Tight Processor Integration for Deep Learning”,
by Klein et al., published in IEEE Transactions on Computers, 2023. An example of
such exploration, related to a two-layers multi-layer perceptron, is presented in
Figure 2.

Figure 2: Aggregate run-time for running both digital reference MLP and its AIMC-
enabled counterpart, for two systems with different capabilities. “DIG” refers to the
digital reference application while “ANA” refers to the analogue AIMC-tile enabled
application. Case numbers corresponds to different architectural arrangements, as

specified in Klein et al., 2023.

3.1 Configuration Parameters
The guide for setting up, running, and utilizing the ALPINE extension in gem5-X-
ALPINE largely follows that of gem5-X itself, as described in Section 2. Nonetheless,
some parameters/configuration options lack scripting support, and should therefore
be done before the gem5 binary is compiled with the scons script, as reported in
Section 2.2. They are described in the rest of this section.

3.1.1. Operation Latency of Custom Instructions
The latency of processing on an AIMC tile is described in the file github.com/
gem5-X/ALPINE/blob/master/gem5-X-ALPINE/src/cpu/minor/MinorCPU.py, line
142, in terms of CPU clock cycles. In the example below, assuming a CPU clock

WiPLASH D5.4 H2020-FETOPEN-863337

www.wiplash.eu 15 December 21st, 2022

frequency of 2GHz8, processing on the AIMC would therefore take 100ns, since
opLat equals 200 and 200 / 2GHz = 100ns.

class MinorDefaultCusProcessFU(MinorFU):
 opClasses = minorMakeOpClassSet(['CusAluProcess'])
 timings = [MinorFUTiming(description="CusProcess",
 srcRegsRelativeLats=[2])]
 opLat = 200

3.1.2. Configuring Tile Generation
In the default ALPINE configuration, AIMC tiles are generated using the following
code in the file github.com/gem5-X/ALPINE/blob/master/gem5-X-ALPINE/src/dev/
arm/aimc_cluster.cc (line 35):

AIMCCluster::AIMCCluster(
 const AIMCClusterParams * p) :
 BasicPioDevice(p, p->pio_size),
 system(dynamic_cast<ArmSystem *>(p->system))
{
 warn("AIMC tile instantiated.");

 this->pioAddr = p->pio_addr;
 this->pioSize = p->pio_size;

 for (auto cpu : p->cpus) {
 cpus.push_back(cpu);
 tiles.push_back(new AIMCTile());
 }

The for loop in the code above creates one new AIMC tile object for every CPU on
the system. These are then placed in a vector and accessed by custom instructions,
as defined below in this section. Indeed, in our implementation, custom instructions
access the vector of AIMCs using the CPU number as an index, as specified in the
github.com/gem5-X/ALPINE/blob/master/gem5-X-ALPINE/src/arch/arm/isa/insts/
data64.isa file.

The AIMC instantiation (src/dev/arm/aimc_cluster.cc) and the instruction set
extensions definition (src/arch/arm/isa/insts/data64.isa) should therefore be jointly
changed to modify the integration strategy of AIMC tiles, for example by only
providing few cores with an AIMC accelerator, or instantiating multiple tiles for each
core.

8 The CPU clock frequency is itself a user-specified parameter, as illustrated in the gem5-X technical
manual.

WiPLASH D5.4 H2020-FETOPEN-863337

www.wiplash.eu 16 December 21st, 2022

3.2 ALPINE AIMC Tile Model Implementation
The AIMC tile model in gem5-X and ALPINE is comprised of four main components:
custom instruction definitions, the custom instruction to PIO device interface, the
AIMC tile wrapper, and finally, the AIMC tile model itself.

3.2.1. ALPINE ISA Extension
Five custom instructions are defined for the tightly-coupled interface. Their format is
shown in Table 1. Note that "X" in a table field refers to a "don't care" value. As
mentioned above, the functionality of instructions is implemented in
src/arch/arm/isa/insts/data64.isa.

Table 1: ALPINE custom instructions

All instructions are 32-bit three-register R-type instructions with 11-bit op-codes, 5-
bit indexing for registers, and 1-bit R/W. A description of each of the instructions’
behavior is described below:

• cmparamwrite: Write the 8-bit parameter held in register Ra in the AIMC tile
weight at index Rn, Rm.

• cmparamread: Read and return the 8-bit parameter into register Rd from the
tile weight at index Rn, Rm.

• cmqueue: Write 32 bits (corresponding to four 8-bits values) to the input register
of the AIMC. No explicit index in the input register is required, as this is
automatically auto-incremented when queuing values.

• cmdequeue: Read in register Rd 32-bits from the AIMC output register,
corresponding to four 8-bits values. Again, the index in the output register is
auto-incremented upon a dequeue command.

• cmprocess: Perform the Matrix-Vector Multiplication operation by multiplying-
and-accumulating each crossbar matrix column with the contents of the input
memory and storing the truncated 8-bit output in the AIMC tile output memory.
This operation also refreshes (sets to 0) the AIMC tile's input memory contents.

gem5
Mnemonic

OpCode Rm

R/W Ra

Rn

Rd

cmprocess 0x00C X 0x0 X X X

cmqueue 0x10C packed
input

0x1 X X X

cmdequeue 0x10C X 0x0 X X Packed
Output

cmparamread 0x20C Tile
Column

0x1 X Tile
Row

Parameter

cmparamwrite 0x20C Tile
Column

0x0 Parameter Tile
Row

Success

WiPLASH D5.4 H2020-FETOPEN-863337

www.wiplash.eu 17 December 21st, 2022

All instructions are implemented as wrappers to methods implemented in the AIMC
Tile Wrapper Object. Therefore, the general implementation of each instruction
simply gets a pointer to the AIMC Tile Wrapper, formats the instruction arguments,
and then performs the associated AIMC Tile Wrapper method. We use the thread
ID to access an AIMC tile, as we assume one private to each CPU core. As
mentioned above, other integration schemes can be realized by modifying the tile
generation mechanism (Section 3.1.2).

3.2.2. ISA-to-Device Interface Connection
In order to provide the tightly-coupled interface to the AIMC Tile Wrapper Object,
the gem5 system object (defined in src/arch/arm/system.hh) is connected to both
the wrapper object and ISA templates. The system object is included in the ISA
templates by including the aforementioned system.hh file as well as
/src/dev/arm/aimc_cluster.hh into /src/arch/arm/isa/includes.isa. The system object
then includes a pointer to the AIMC wrapper object that allows the custom
instructions to query the wrapper object.

3.2.3. AIMC Tile Wrapper Object and PIO Device
To configure, generate, and access the individual AIMC tile models, the AIMC Tile
Wrapper object, (src/dev/arm/aimc_cluster.hh), is responsible for the placement of
and delegation of tasks to the AIMC tiles. It is configured as a gem5 peripheral
input/output (PIO) device and sits atop the ARM Realview Platform
(src/dev/arm/Realview.py):

class AIMCCluster(BasicPioDevice):
 type = 'AIMCCluster'
 cxx_header = "dev/arm/aimc_cluster.hh"
 pio_addr = Param.Addr(0x10020000, "Address for AIMC core
 access.")
 pio_size = Param.Int32(0x1000, "Size of AIMC memory-
 mapped address range.")
 cpus = VectorParam.BaseCPU("CPUs/hardware threads
 attached to this device.")

As required by PIO devices, the AIMC cluster is placed in the address range of
[0x10020000 : 0x10021000].
The "cpus" parameter is used to generate AIMC tiles, because the current
implementation of ALPINE generates one AIMC Tile per CPU on the simulated SoC.
As detailed above, other strategies can be implemented by modifying the source
code in src/dev/arm/aimc_cluster.cc.

WiPLASH D5.4 H2020-FETOPEN-863337

www.wiplash.eu 18 December 21st, 2022

3.2.4. AIMC Tile Model
The individual AIMC tiles modules are generated as structs, as shown below, in the
file src/dev/arm/aimc_cluster.hh:

struct AIMCTile {
 // Constructor.
 AIMCTile() :
 crossbarHeight(2000),
 crossbarWidth(2000),
 crossbar(new int8_t[crossbarWidth*crossbarHeight]),
 inputMemory(new int8_t[crossbarHeight]),
 outputMemory(new int8_t[crossbarWidth]),
 inputMemoryCounter(0),
 outputMemoryCounter(0),
 vectorization(4)
 {
 for (int i = 0; i < crossbarHeight; i++) {
 inputMemory[i] = 0;
 for (int j = 0; j < crossbarWidth; j++) {
 crossbar[(i * crossbarWidth) + j] = 0;
 }
 }

 for (int i = 0; i < crossbarWidth; i++) {
 outputMemory[i] = 0;
 }
 }

 const int crossbarHeight; // Height of input memory.
 const int crossbarWidth; // Width of output memory.
 int8_t * crossbar; // Parameters crossbar.
 int8_t * inputMemory; // Input memory (pre-DAC).
 int8_t * outputMemory; // Output memory (post-ADC).
 int inputMemoryCounter; // Index into input memory.
 int outputMemoryCounter; // Index into output memory.
 const int vectorization; // How many values do we
 // queue/dequeue?
};

The struct holds the parameter corresponding to the emulated tile physical
dimensions (height and width i.e., number of rows and columns). Furthermore, it
stores the state of the AIMC accelerator: the values of its stored weights and that of
the input and output registers. It is also in charge of auto-incrementing counters in
the input and output registers upon a queue or dequeue operation.

WiPLASH D5.4 H2020-FETOPEN-863337

www.wiplash.eu 19 December 21st, 2022

3.3 AIMClib
AIMClib is a header-only C/C++ software library which facilitates the interface to the
AIMC cluster from an application perspective. It is held in a folder separate from
ALPINE in the master/aimclib repository branch. AIMClib encapsulates the intrinsics
necessary to execute the custom instructions, as well as basic methods for queuing
and dequeuing larger data structures such as arrays and vectors. Furthermore, it
includes a C++ "checker" module that is used to debug AIMClib implementations by
emulating gem5/ALPINE behavior in software (i.e., outside of an ALPINE system).
To use AIMClib in a C program, simply include aimc.hh in the source code of the
desired program to make the function prototypes provided by AIMClib available. To
use the checker module specifically, the option "-DUSE_CHECKER" should be
included in the gcc/g++ compilation. The most relevant function prototypes are
included below:

// Write a matrix/vector to the AIMC tile crossbar.
inline void mapMatrix(int aimc_x, int aimc_y,
 int height, int width,
 int8_t ** m);
inline void mapMatrix(int aimc_x, int aimc_y,
 int height, int width,
 int8_t * m);

// Queue/dequeue to/from AIMC tile input/output memories.
inline void queueVector(int size, int8_t * v);
inline void dequeueVector(int size, int8_t * v);

// Perform Matrix Vector Multiplication in the AIMC tile.
inline void aimcProcess();

In addition to the base prototypes listed above, these methods are also templated,
in case casting from a higher-precision data type to int8_t is required.

3.4 ALPINE Sample Application
We provide the application code to perform inference on a 1024x1024 Perceptron.
It is written in C++ code using AIMCLib calls to interface the accelerator module.
This application can be compiled and run on a gem5-X/Alpine instance as specified
in Section 2.2. The application code is available in the gem5-X-ALPINE repository
as aimclib/example.cc, and reported below.

WiPLASH D5.4 H2020-FETOPEN-863337

www.wiplash.eu 20 December 21st, 2022

int main(int argc, char * argv[])
{
 // Test bench parameters.
 int n_x = 1024; // MLP input/output dimensions.
 int T_x = 10; // Number of inferences.

 // Set up and initialize vectors/matrices.
 int8_t ** input = new int8_t*[T_x];
 int8_t * W1 = new int8_t[n_x*n_x];
 int8_t ** output = new int8_t*[T_x];
 for (int i = 0; i < T_x; i++) {
 input[i] = new int8_t[n_x];
 output[i] = new int8_t[n_x];
 for (int j = 0; j < n_x; j++) {
 input[i][j] = (int8_t)rand();
 output[i][j] = (int8_t)rand();
 }
 }
 for (int i = 0; i < n_x*n_x; i++)
 W1[i][j] = (int8_t)rand();

 // Map weights to AIMC tile.
 mapMatrix(0, 0, n_x, n_x, W1);

 // Do inference.
 for (int i = 1; i < T_x; i++)
 {
 // Queue input for next inference in first layer.
 queueVector(n_x, input[i]);

 // Do MVM.
 aimcProcess();

 // Dequeue output from AIMC tile MVM.
 dequeueVector(n_x, output[i]);
 }

 // Cleanup and return.
 for (int i = 0; i < T_x; i++) {
 delete[] input[i];
 delete[] output[i];
 }
 delete[] input;
 delete[] output;
 delete[] W1;

 return 0;
}

WiPLASH D5.4 H2020-FETOPEN-863337

www.wiplash.eu 21 December 21st, 2022

A dedicated compilation script (aimclib/build_example.sh) is also provided. The
application can be compiled with or without the -DUSE_CHECKER option. Using
the option, compiled binaries will use stand-in behavioral models for performing
AIMClib calls. Otherwise, binaries will target the gem5-X + ALPINE system
simulation.
The gem5-X + ALPINE simulation output reports, among other statistics, the number
of executions on AIMC tiles (calls to the cmprocess instruction), as well as the
amount of queueing and dequeuing operations. This data, in conjunction with the
hardware characterization performed in WP4 by the project partner IBM, can be
exploited to perform an energy/performance analysis of the application execution
on AIMC-accelerated systems. The WiPLASH partners IBM and EPFL indeed
followed this approach, considering both a low-power and a high-performance
architecture, in the Klein et al. IEEE Transactions on Computers article mentioned
in Section 1.3.

WiPLASH D5.4 H2020-FETOPEN-863337

www.wiplash.eu 22 December 21st, 2022

4 On-chip Wireless Module and System Integration

Gem5-X-On-Chip-Wireless is a dedicated fork of Gem5-X including custom modules
for emulating systems with in-package wireless links. This extension was the basis
for the conference paper “System-Level Exploration of In-Package Wireless
Communication for Multi-Chiplet Platforms”, presented at the ASP-DAC 2023
conference.

The extension allows the emulation of systems comprising wireless links among
different architectural components (processors, private or shared caches, main
memory, etc.). Links can be parametrized in terms of latency, bandwidth and
employed Medium Access Control (MAC) in order to gather performance results
such as the ones shown in Figure 3.

Two MAC protocols are implemented at present:

• Token passing (Figure 4). When using this protocol, a virtual token is
exchanged among components connected to a wireless link. Only the
component (e.g. processor core) which holds the token can initiate a data
transaction, such as a read or write operation. The holder releases the token
immediately if it has no outstanding transaction, otherwise the release is
performed upon the completion of the first transaction in the queue.

• Exponential backoff (Figure 5). In this protocol, all components interfacing
the wireless link can initiate a transaction at any time. If a collision is detected,
all involved transactions are aborted. Each of them is further tried at a random
time inside a time interval. The size of the interval is exponentially increased
when collisions are detected, and decreased upon a successful transaction.
The initial retry window (slot) size, as well as the maximum value of the
exponent employed to increase it, can be parametrically determined in our
implementation.

Figure 3: Speed-up over ideal interconnect of token passing and exponential
backoff MAC protocols, for different link bandwidths and three representative

applications. Performance over UCIe inter-chiplet wired link is also
presented, for reference.

WiPLASH D5.4 H2020-FETOPEN-863337

www.wiplash.eu 23 December 21st, 2022

Figure 4: Timing diagram of the token passing protocol.

Figure 5: Timing diagram showing the behavior of the exponential backoff protocol

under successful transmissions (green ticks) and collisions (red crosses).

The wireless transceiver module is built upon the standard component interfacing
mechanism (“crossbar”9) of gem5, augmented with additional features for collision
detection and retransmission of packets according to a MAC protocol. This
approach allows to freely instantiate wireless links across the system hierarchy of
an emulated system, without requiring any modification to other architectural
components or in software applications.

4.1 Running gem5-X Full System Mode with wireless extensions
Gem5-X-On-Chip-Wireless can be cloned from the repository and built in the
following the usual procedure for gem5-X, as mentioned in Section 2. After the
environment is set up, wireless-capable systems can be specified either from a
terminal command line or from a configuration file.

4.1.1. Defining wireless-capable systems from the command line
An example of using the former approach is provided below.

./build/ARM/gem5.fast \
--remote-gdb-port=0 \
-d /path/to/your/output/directory \

9 The term “crossbar” refers in this Section to the standard component used in gem5 and gem5-X to
implement interfaces among storage and computing elements in systems. Its meaning is therefore
distinct with respect to the one used in Section 3, where it instead referred to an AIMC structure.

Node 0

Node 1

Node 2

TUanVmiVVion
UeTXeVW

Token
oZneUVhip

Node 0

Node 1

Node 2

TUanVmiVVion
UeTXeVW

Random
ZaiWing Wime

WindoZ
Vi]e

WiPLASH D5.4 H2020-FETOPEN-863337

www.wiplash.eu 24 December 21st, 2022

configs/example/fs.py \
--cpu-clock=1GHz \
--kernel=vmlinux \
--machine-type=VExpress_GEM5_V1 \
--dtb-file=<path_to_gem5-
X>/system/arm/dt/armv8_gem5_v1_<NUM_CORES>cpu.dtb \
-n <NUM_OF_CORES> \
--disk-image=gem5_ubuntu16.img \
--caches \
--l2cache \
--l1i_size=32kB \
--l1d_size=32kB \
--l2_size=1MB \
--l2_assoc=2 \
--mem-type=DDR4_2400_4x16 \
--mem-ranks=4 \
--mem-size=4GB \
--sys-clock=1600MHz \
--membus-wireless \
--wireless-bandwidth=12.5GB/s \
--mac-protocol=exp_backoff

The command above generates a system with <NUM_CORES> number of cores,
L1 and L2 caches of the defined sizes and a CPU clock of 1GHz. The system will
mount a disk containing Ubuntu Linux and boot from it.
Options specifically related to Gem5-X-On-Chip-Wireless are in the last three lines
of the command. Using them, a wireless memory bus is instantiated, connecting
main memory with the L2 cache. The wireless link has a bandwidth of 12.5GB per
second, and employs an exponential backoff protocol to arbitrate bus collisions.
Command line options related to in-package wireless links are

• --l2bus-wireless: instantiates a wireless link connecting L1 and L2 caches.
• --membus-wireless: instantiates a wireless link connecting L2 caches and

main memories.
• --wireless-bandwidth=<BANDWIDTH>: set the bandwidth of the wireless

link.
• --mac-protocol=<exp backoff / token pass>: selects the MAC protocol,

either as exponential backoff or as token passing, as described in D5.3.
• --retry-slot-size=<SIZE>: sets the size of the retry slot when using the

exponential backoff protocol, specified as a multiple of the time required to
transmit a byte according to the available bandwidth.

• --backoff-ceil=<MAX EXPONENT>: sets the upper limit to of the size of the
retransmission window in the exponential backoff protocol.

Defining systems via command line offers a fast avenue towards exploring the
performance of in-package wireless. Nonetheless, it also limits flexibility in the
system generation. Indeed, only systems with a two-level cache hierarchy are
supported, and only either L1/L2 and L2/main-memory wireless links can be
instantiated.

WiPLASH D5.4 H2020-FETOPEN-863337

www.wiplash.eu 25 December 21st, 2022

4.1.2. Defining wireless-capable systems with configuration files
In a system configuration file, a wireless link can be instantiated similarly to a
standard gem5 crossbar, adding the parameters specific to wireless transmission
(bandwidth, employed MAC protocol etc.). An example related to link using an
exponential backoff protocol is reported below.

system.wireless_link = WirelessXBar(
 clk_domain = system.clk_domain,
 bandwidth = options.wireless_bandwidth,
 mac_protocol = options.mac_protocol,
 retry_slot_size =
options.retry_slot_size,
 backoff_ceil = options.backoff_ceil)

Architectural components can then be connected to the ports of the wireless link as
with usual gem5-X crossbars, freely composing a system as desired. In the example
below, wireless ports are connected to L1 and L2 caches:

system.l1cache.master = system.wireless_link.slave
system.l2cache.slave = system.wireless_link.master

An example system configuration file is provided in the gem5-X-On-Chip-Wireless
repository, here: github.com/gem5-X/On-Chip-Wireless/blob/master/gem5-X-
wireless/configs/common/CacheConfig_wirelessExample.py.

4.2 On-Chip-Wireless module implementation files
The main files containing the wireless module descriptions are in the directory
src/mem/. A brief description is provided in the following:

• WirelessXBar.py contains a description of the crossbar and of its
parameters.

• wireless\xbar.hh is a header file defining variables and functions
prototypes of the wireless module.

• wireless\xbar.cc describes the functionality of the gem5-X wireless
module. It is built upon the standard crossbar implementation in gem-5. In
addition, it supports collision detection and retransmission based on token
passing and exponential backoff protocols, as well as a parametric link
bandwidth.

4.3 Example application
Included in the gem5-X-On-Chip-Wireless repository is the STREAM benchmark
suite10: benchmarks/Stream/Stream.c .The suite is provided with no adaptation in
the C code, as the on-chip wireless components are transparent to software.
OpenMP pragmas are instead updated in order to distribute the execution on
different cores, as exemplified in the code snipped below for the Copy() benchmark:

10 STREAM benchmark suite: www.cs.virginia.edu/stream/.

WiPLASH D5.4 H2020-FETOPEN-863337

www.wiplash.eu 26 December 21st, 2022

void tuned_STREAM_Copy()
{
 ssize_t j;
#pragma omp parallel for proc_bind(close)
 for (j=0; j<STREAM_ARRAY_SIZE; j++)
 c[j] = a[j];
}

WiPLASH D5.4 H2020-FETOPEN-863337

www.wiplash.eu 27 December 21st, 2022

5 Conclusions and Perspectives

The deliverable describes the structure, content and license of the repository the
consortium employed to release the system level simulators developed during the
course of the project.
Two repositories have been published on the github platform. The full system
simulators therein are forks of the gem5-X environment. As such, they are part of
the same organization of github, constituting important elements in the gem5-X
ecosystem. The repositories are able to emulate the full hardware/software stack of
systems embedding the core innovations of WiPLASH, namely in-package wireless
communication and accelerated computation based on Analog In-memory
Computing (AIMC).
These tools were the basis for the research contributions achieved in WiPLASH -
WP5, which demonstrated the system-level benefit of nanoantennae and AIMC tiles
for next-generation computing systems. We now release them under the very
permissive BSD-3-Clause license, which will allow academic and industrial
institutions to build upon our development efforts and our findings.
The present document is the last deliverable of WP5. Work package activities for
the remainder of the project will proceed along two directions. First, we will deepen
our explorations, further refining our frameworks to gain novel insights. Second, we
will react feedbacks from the system simulation communities after the code release.

