

Horizon 2020 Program (2014-2020)
FET-Open Novel ideas for radically new technologies

FETOPEN-01-2018-2019-2020

Architecting More than Moore – Wireless Plasticity for
Massive Heterogeneous Computer Architectures 1†

D5.2: Die-level exploration
at design-time/runtime

WP5 - Multi-scale Simulation

Contractual Date of Delivery 30/09/2021

Actual Date of Delivery 29/09/2021

Deliverable Security Class Public

Editor Giovanni Ansaloni (EPFL)

Contributors EPFL (Leader), IBM

Quality Assurance Irem Boybat(IBM), Renato Negra(RWTH)

(IBM)

1† This project is supported by the European Commission under the Horizon 2020 Program with Grant agreement
no: 863337

Ref. Ares(2021)5938705 - 30/09/2021

WiPLASH D5.2 H2020-FETOPEN-863337

www.wiplash.eu 2 September 29, 2021

Document Revisions & Quality Assurance
Deliverable Number D5.2
Deliverable Responsible EPFL
Work Package WP5
Main Editor Giovanni Ansaloni

Internal Reviewers

1. Irem Boybat (IBM)
2. Renato Negra (RWTH)

Revisions

Version Date By Overview
0.1 17/07/2021 Giovanni

Ansaloni
Document created

0.1.2 4/08/2021 Joshua Klein,
Rafael Medina

Section 3/4 drafted

0.1.3 2/09/2021 Rafael Medina Architectural exploration finalized
0.1.4 17/09/2021 Giovanni

Ansaloni
Update after internal review

1.0 29/09/2021 Giovanni
Ansaloni

Minor updates, submitted version

Legal Disclaimer
The information in this document is provided “as is”, and no guarantee or warranty is
given that the information is fit for any particular purpose. The above referenced
consortium members shall have no liability to third parties for damages of any kind
including without limitation direct, special, indirect, or consequential damages that may
result from the use of these materials subject to any liability which is mandatory due to
applicable law. © 2021 by WiPLASH Consortium.

WiPLASH D5.2 H2020-FETOPEN-863337

www.wiplash.eu 3 September 29, 2021

Executive Summary
In its first part, the deliverable describes the rationale guiding the design of the
WiPLASH system-level simulator. Then, it details the strategy employed to develop its
novel modules, which simulate Analog In-Memory Computing (AIMC) memristive
arrays and wireless in-die interconnects, respectively. These two components allow for
the exploration of the performance of deep-learning applications on heterogeneous
systems-on-chip featuring on-die wireless antennas. Hence, showcasing the added
value provided by WP5 at this stage of the WiPLASH project. The last part of the
deliverable reports an architectural exploration targeting the AlexNet benchmark,
considering systems with different computation and communication capabilities.

WiPLASH D5.2 H2020-FETOPEN-863337

www.wiplash.eu 4 September 29, 2021

Abbreviations and Acronyms

AIMC Analog In-Memory Computing

BW Bandwidth
CL Convolutional Layer
CNN Convolutional Neural Networks
CPU Central Processing Unit
FCFS First Come First Served
ISA Instruction Set Architecture
MVM Matrix-Vector Multiplication
RGB Red Green Blue
RRAM Resistive Random Access Memory
SoC System on Chip
SPM Scratchpad Memory
WP Work Package

WiPLASH D5.2 H2020-FETOPEN-863337

www.wiplash.eu 5 September 29, 2021

The WiPLASH consortium is composed by:

UPC Coordinator Spain
IBM Beneficiary Switzerland
UNIBO Beneficiary Italy
EPFL Beneficiary Switzerland
AMO Beneficiary Germany
UoS Beneficiary Germany
RWTH Beneficiary Germany

WiPLASH D5.2 H2020-FETOPEN-863337

www.wiplash.eu 6 September 29, 2021

Table of Contents
DOCUMENT REVISIONS & QUALITY ASSURANCE 2
EXECUTIVE SUMMARY 3
ABBREVIATIONS AND ACRONYMS 4
TABLE OF CONTENTS 6
LIST OF FIGURES 7
 LIST OF TABLES 8
1 INTRODUCTION 9
2 ENABLING SYSTEM CO-DESIGN LOOPS 10
3 MODELLING WIRELESS COMMUNICATION LINKS IN GEM5-X 13
4 MODELING AIMC CORES IN THE TARGET ARCHITECTURE 17
5 SYSTEM ARCHITECTURE EXPLORATION 20

5.1 EXPERIMENTAL SETUP 20
5.2 EXPLORATION OUTCOMES 22

6 CONCLUSIONS AND PERSPECTIVES 25
BIBLIOGRAPHY 26

WiPLASH D5.2 H2020-FETOPEN-863337

www.wiplash.eu 7 September 29, 2021

List of Figures

FIGURE 1: IMPLEMENTED CO-DESIGN LOOPS 10

FIGURE 2: EXAMPLE OF AGGREGATED STATISTICS: WIRELESS BANDWIDTH
FOR DIFFERENT CPUS. 11

FIGURE 3: EXCERPT OF DETAILED EXECUTION TRACE. 12

FIGURE 4: BLOCK SCHEME AND ARCHITECTURE OF THE DEVELOPED
WIRELESS MODEL GEM5-X COMPONENT. 14

FIGURE 5: TIMING DIAGRAM OF COLLISION MODELLING. 15

FIGURE 6: : IDEALIZED SCHEMATIC OF AN AIMC CROSSBAR
ARCHITECTURE. 17

FIGURE 7: ALEXNET LAYERS CHARACTERISTICS AND THEIR MAPPING TO
CPUS IN THE CONSIDERED BENCHMARK APPLICATION. 20

FIGURE 8: BLOCK SCHEME OF THE SIMULATED ARCHITECTURE,
FEATURING 8 CPUS, PRIVATE L1 AND SHARED L2 CACHES. EACH CPUS
INTERFACES A TIGHTLY COUPLED AIMC ACCELERATOR 22

WiPLASH D5.2 H2020-FETOPEN-863337

www.wiplash.eu 8 September 29, 2021

List of Tables

Table 1: Characteristics of the Convolutional layers in the benchmark
application. 21

Table 2: Run-time of the AlexNet benchmark on the simulated system, with and

without AIMC acceleration, for different wireless channel bandwidths. 23

Table 3: Packet collision on the simulated system without AIMC acceleration,

for different wireless channel bandwidths. 23

Table 4: Packet collision on the AIMC-accelerated simulated system for

different wireless channel bandwidths. 24

WiPLASH D5.2 H2020-FETOPEN-863337

www.wiplash.eu 9 September 29, 2021

1 Introduction

The multiscale simulation Work Package 5 (WP5) aims at demonstrating the
performance provided by innovative computing architectures. It provides system-wide
run-time execution metrics when executing complex applications, allowing the
systematic exploration of the performance deriving from different settings of
architectural parameters.
In the context of the overall objectives of the WiPLASH project, particular focus of WP5
is on (a) the modelling on-die and on-package wireless connection and (b) on the
integration of Analog In-Memory Computing (AIMC) accelerator models.
These two aspects are interdependent, as an increase in computation capability due
to acceleration may increase the pressure on CPUs-to-memory and CPUs-to-CPUs
links, shifting the performance bottleneck from computation to communication. The
effectiveness of hardware acceleration is hence ultimately dependent on the available
interconnect bandwidth.
To co-explore these facets, in WP5 we are developing a full-system simulation
infrastructure, based on gem5-X [1][2]. The simulator allows to rapidly define and run
applications on hardware-accelerated and wirelessly enabled multicore systems.
Simulations center on the execution of AI applications, in particular Convolutional
Neural Networks (CNNs). Such a choice is motivated by CNNs high workload in terms
of both computation and communication requirements, which makes them challenging
targets for our explorations as reported in D4.1. Since the main computational hotspots
of CNN applications are Matrix-Vector Multiplications (MVMs), we consider dedicated
AIMC tiles [3][4] to speed up these computational patterns.
Summing up, this deliverable illustrates the research and development activities
undertaken in the context T5.2 and the first months of T5.3:

● We developed a module modelling inter-CPU wireless communication,
integrated within the gem5-X full-system simulation environment. The wireless
communication module can be employed to define systems with heterogeneous
(wireless and wired) interconnects.

● We integrated the wireless communication and AIMC acceleration models (the
latter being first presented in D5.1) in a unified framework.

Targeting the AlexNet [5] CNN benchmark, we illustrate a preliminary system
exploration, illustrating the impact of the wireless communication bandwidth on the run-
time of a multi-CPU system, with and without AIMC acceleration.

WiPLASH D5.2 H2020-FETOPEN-863337

www.wiplash.eu 10 September 29, 2021

2 Enabling system co-design loops

The first objective towards which the effort in WP5 is directed, is to integrate the
findings on WP3 and WP4 from a more high-level viewpoint. This stance allows the
evaluation of run-time metrics of entire systems, executing large applications. In this
context, we are focusing both on the AIMC characterization and that of the wireless
antennas and communication protocols.
The second objective is to provide valuable feedback to the other WPs of the relative
benefits of different arrangements, and where performance bottlenecks can be
expected in different scenarios. Such information will allow other WPs to refine their
requirements, avoiding the pitfalls of under- or over-designing hardware
components and/or protocols. Indeed, it will provide important inputs for the design
of the AIMC accelerator models (T4.1) and for the development of wireless MAC
protocols (T3.3) and networks (T3.4).

Figure 1: Implemented co-design loops.

Feedback can be provided both with high-level metrics summarizing the run-time,
packet collisions etc. of an execution on a target system. Indeed, Figure 2 shows a
graph illustrating the wireless transmission bandwidth requirements originating from
a multi-CPU system executing AlexNet inference, where the different convolutional,
max-pooling and linear layers are mapped on CPUs 1-6, while CPU 0 is used to
orchestrate the execution.

WiPLASH D5.2 H2020-FETOPEN-863337

www.wiplash.eu 11 September 29, 2021

Figure 2: Example of aggregated statistics: wireless bandwidth for different CPUs.

Detailed execution traces can also be obtained, for example illustrating time
annotations for each wireless transmission among couples of CPUs. Such traces
will complement the ones provided in WP4. The format of the traces is shown in
Figure 3, which reports a brief excerpt. They are obtained by employing gem5
components named Communication Monitors [7]. The obtained data is then filtered
to derive the operations of interest, for example wireless transmission operations in
Figure 3.

WiPLASH D5.2 H2020-FETOPEN-863337

www.wiplash.eu 12 September 29, 2021

Figure 3: Excerpt of detailed execution trace.

We aim at realizing the above-mentioned objectives while maintaining a high degree
of configurability in the development of system simulation components. Indeed, both
the AIMC and the wireless connection components are parameterizable across
multiple dimensions e.g., regarding the size of the AIMC accelerators and the
bandwidth of wireless communication links. Parameters can then be easily swept
by modifying gem5-X system configurations, allowing for rapid and automated
design space explorations.
We aimed at supporting novel features in self-contained modules, hiding their
implementation and only exposing clear and simple interfaces to system hierarchies.
In this way, we minimized the effort required to define wirelessly communicating and
AIMC-accelerated multi-CPU systems, as all standard gem5 components such as
CPUs, caches, main memories etc. can be reused without modifications. Moreover,
we allowed for easy upgrades of the supported features of the developed
components, such as the integration of more complex or detailed protocols mirroring
the progress in WP3.

WiPLASH D5.2 H2020-FETOPEN-863337

www.wiplash.eu 13 September 29, 2021

3 Modelling wireless communication links in gem5-X

We encapsulated the model of wireless transmission channels and protocols as a
self-contained gem5-X component. Hence, as discussed in the previous section,
wireless Systems-on-Chip (SoCs) can be defined while reusing existing gem5
components for processors, buses, memories etc. [6]. Indeed, adding a wireless
channel to a design simply consists in connecting, in the system configuration file,
the system components (e.g. CPUs) that communicate wirelessly through the
channel module.
The code snippet below exemplifies the instantiation of a wireless channel. It
contains the component declaration, which refers to the header file as an entry point
to the module implementation. Moreover, the snippet reports the code lines
instantiating the channel component with the desired parameters, and the ones
connecting the created components with the CPUs and Scratchpad Memories
(SPMs), as detailed further in this section.

Wireless Channel declaration
 class WirelessChannel(MemObject):

type = 'WirelessChannel'
cxx_header = "mem/wireless_channel.hh"

 ...

Instantiation of a Wireless Channel
 system.wl_channel =

 WirelessChannel.WirelessChannel(
 bandwidth = options.wireless_bandwidth,

 <...other parameters...>
)

Connecting the channel to the crossbars in the CPU and SPM
sides
 system.cpu_channel_bus.master = system.wl_channel.slave
 system.channel_spm_bus.slave = system.wl_channel.master

Excerpt of system configuration file instantiating a wireless channel among
multiple CPUs.

Our focus is to reproduce two defining characteristics of CPU-to-CPU wireless links:
 - limitations in bandwidth
 - collisions when multiple CPUs try to transmit data through the same channel

at the same time.
From a high-level perspective, the module employs three main components: buffers
(realized as SPMs) are employed to store the data being received by each
processor, while crossbars connect buffers, CPUs, and the wireless channel model,
as illustrated in Figure 4. Such implementation allows decoupling the content of the
transmitted data, the connectivity among CPUs, and the characteristic of the
wireless channel. In particular, the latter is only described in the wireless channel

WiPLASH D5.2 H2020-FETOPEN-863337

www.wiplash.eu 14 September 29, 2021

block, minimizing the effort required to extend our implementation and support
different protocol designs [8] [9]. As an example, while at present we only support
retransmission-based mechanisms, our approach can easily be extended to token-
based ones.
In more detail, in order to model the wireless transmission, we assign a buffer to
each of the connected CPUs. A write operation from a CPU to the buffer of a
different CPU is interpreted as a wireless transmission, and thus the limitations of
bandwidth and packet collisions are considered for the communication. On the other
hand, we allow direct, non-wireless read and write from a CPU to its own buffer, as
these are interpreted as local accesses. All CPU-buffers data traffic goes through
the wireless channel model. The module will then decide whether the access is local
or remote, depending on the CPU that initiated it and the access address.
The wireless channel module (see again Figure 4) presents two ports, facing distinct
crossbars2, one for the CPUs side and the other for the buffers side. Crossbars are
idealized (i.e., they have no associated delay), in order not to influence the timing
behavior of the wireless communication.

Embedded in the wireless channel module is a transmitter unit which serves the
incoming write request packets and enables the modelling of bandwidth and
collisions. The transmitter is busy for a time corresponding to the available
transmission bandwidth, attempting to forward data packets to their destination. If
there is no collision, the release of the transmitter signals the successful completion
of the wireless transmission. The transmission time (T) of the forwarding function is
set accordingly to the size of the packet and the modelled bandwidth (BW) of the
wireless channel, according to the following formula:

2 Crossbar components are used in gem5 to model many-to-many connections

Figure 4: Block scheme and architecture of the developed wireless model
gem5-X component.

WiPLASH D5.2 H2020-FETOPEN-863337

www.wiplash.eu 15 September 29, 2021

T = Size (packet) / BW

The transmitter will reject packets if it is busy. This can be interpreted as:

1. Reaching the bandwidth limit of the channel, if the CPU originating the
rejected packet is the same as the one transmitting.

2. A collision of packets, if the source of the new packet is different to the one
of the packet being transmitted. This is equivalent to two or more different
CPUs trying to wirelessly transmit at the same time.

In both cases, the CPU originating the rejected packet is stalled, and is signaled to
retry the transmission once the current transmission has been served. This strategy
therefore implements a retransmission-based protocol.
The ownership of the transmitter unit is obtained by CPUs in a First-Come First-
Served (FCFS) fashion. In case the transmitter is idle and two CPUs try to transmit
in the same cycle, the order of ownership is sorted following gem5-X’s order of core
execution, in which the CPUs are identified from lower to the higher indices.
As depicted in Figure 5, to model the timing behavior of collisions, we delay the write
responses for a random time in a (parameterizable) window, which results in
colliding transmissions to incur in random delays. As again shown in Figure 5, re-
transmission attempts can also collide. Hence, we repeat the above-mentioned
strategy iteratively increasing the window size, following an exponential backoff
approach.

Figure 5: Timing diagram of collision modelling.

Collisions are detected by checking if a) a CPU is trying to use the transmitter while
it is owned by other CPUs, or b) a CPU is trying to use the transmitter while previous
collisions are still being resolved. In both cases, involved packets are delayed
proportionally to the total number of ongoing collisions:

delay = (n-1)× W
where n is the number of collisions to be addressed and W is the minimum window
size, which is enough waiting time for all the colliding transmissions to have been
served by the transmitter. After the delay, each response packet of the colliding
transmissions is assigned a random time to be forwarded to the source CPU. When
the assigned transmission time arrives, we check for overlaps with the other

Fig. SEQ Fig. * ARABIC 2 – Simple model of a collision avoidance
strategy

WiPLASH D5.2 H2020-FETOPEN-863337

www.wiplash.eu 16 September 29, 2021

scheduled retransmission. If an overlap occurs, the involved packets are reassigned
at random retransmission times; otherwise, the transmission of the packet
successfully ends. The random transmission time is chosen within an interval whose
size is decided via the exponential backoff algorithm. The minimum interval size (W)
and the base of the exponent for backoff can be configured. In our first experiments,
we fixed the retry window values to:

 (2c -1)× W, where c is the number of retries incurred by a packet.
This approach makes colliding more unlikely the more retransmissions occur.
In Section 5 we explore the performance of different CPU-to-CPU wireless
bandwidths by targeting an 8-CPU system in which all cores are connected to each
other through a wireless channel. We use per-core Scratchpad Memories (SPMs)
connected to the buffer port of the wireless channel model to enable inter-CPU
transmissions. Applications index memory locations in the SPM address ranges (as
determined by the system configuration script) in order to write and read to local and
remote SPMs. A write to a remote SPMs triggers a wireless transmission.

WiPLASH D5.2 H2020-FETOPEN-863337

www.wiplash.eu 17 September 29, 2021

4 Modeling AIMC tiles in the target architecture

Analog In-Memory Computing (AIMC) accelerators are formed by a series of vertical
and horizontal lines in a pattern carrying input and output signals, as depicted in
Figure 6. At each intersection, programmable Resistive RAMs (RRAMs) connect
horizontal and vertical wires. The current at the outputs of the accelerator is a linear
combination of the voltages of the inputs, weighted according to the resistance
values. Analog-to-digital converters are employed to sense these currents. Hence,
a N-Input, M-output AIMC embeds NxM contacts (programmable resistances). At
each execution it computes at once the Matrix-Vector Multiplication (MVM) of the
vector of the inputs with the matrix encoded in the resistances.

Figure 6: Idealized schematic of an AIMC architecture.

The design and integration of AIMC tiles are active and promising research topics
[10]. AIMC is particularly suited for the acceleration of AI applications such as CNNs,
as these are strongly relying on MVM operations. An advanced prototype AIMC
implementation was recently demonstrated by IBM research[3].

We firstly introduced our gem5-X AIMC model in D5.1. We now showcase in Section
5 its use in the context of a multi-core wireless system. In our gem5-X
implementation, we model AIMC tiles as peripheral input/output components, which
can be embedded in single- or multi-CPU systems. Moreover, one or multiple AIMC
tiles can be instantiated for each CPU. AIMC models can be parametrized through
the system configuration file in terms of width and height, which correspond to the
desired number of inputs and outputs, all represented as 8-bit integers.

Below is an excerpt of a gem5-X example configuration script specifying and
integrating an AIMC accelerator. The accelerator is first declared as an available
system component, whose characteristics are defined in the “AIMC.hh” header file.
Instances (e.g. “aimc”) are then instantiated, and they are finally connected using
the desired links (“bus.master” in the example).

WiPLASH D5.2 H2020-FETOPEN-863337

www.wiplash.eu 18 September 29, 2021

 # AIMC tile declaration
 class AnalogComputationalMemory(BasicPioDevice):
 type = 'AnalogInMemoryComputing'
 cxx_header = "dev/arm/AIMC.hh"
 ...

 # Instantiation of an AIMC accelerator
 aimc = AnalogComputationalMemory()

 # Connecting the AIMC tile on the bus.
 self.aimc.pio= bus.master

Excerpt of system configuration file instantiating an AIMC accelerator module.

CPUs and AIMC tiles are tightly coupled, so that a CPU can only interface with its
local AIMC tile, governing them via special opcodes extending the ARMv8 ISA. Such
instructions allow managing the transfer of inputs and outputs to/from AIMC tiles, as
well as to program the resistances encoding the weights matrix. It has to be noted
that changing the resistance values is a timing and energy intensive operation, both
because of the electrical characteristics of resistive memories and because NxM
connections are present in the AIMC tiles. This motivates our choice, in Section 5,
of not modifying them during the benchmark execution, mapping instead different
matrix-vector-multiplications (realizing different model layers) in different AIMCs
tiles.

The 5 new custom instructions added to the ARMv8 ISA are termed CM_QUEUE,
CM_DEQUEUE, CM_PROCESS, CM_P_W, and CM_P_R. CM_QUEUE and
CM_DEQUEUE queues 8-bit inputs and dequeue 8-bit outputs from the input and
output memories of the AIMC tile, respectively. CM_PROCESS signals the AIMC
tiles to perform the constant-time MAC operations using the queued input memory
values, and then store the output in the output memory. This operation also clears
the input memory. Finally, the CM_P_R and CM_P_W instructions read and write
parameters directly to the AIMC tile, respectively. Parameter writes are used to
program the AIMC tile while parameter reads are only used for debugging purposes.

The usual flow of these instructions is as follows:
1. During the programming/setup phase of an application, CM_P_W is called to

write weights/parameters into the AIMC tile.
2. Inputs are queued into the input memory via the CM_QUEUE instruction. The

instruction accepts a 32-bit value, so that up to four 8-bit inputs can be queued
into the input memory with one instruction call. It has a latency of 1 ns per call.

3. Once the input memory is set, CM_PROCESS is called to perform the MVM,
clear in the input memory, and store the output in output memory. Only one
instruction invocation is needed to compute the entire matrix-vector
multiplication, which has a latency of 100 ns per call

WiPLASH D5.2 H2020-FETOPEN-863337

www.wiplash.eu 19 September 29, 2021

4. Finally, the CM_DEQUEUE instruction is called to fetch the outputs in a similar
manner to CM_QUEUE (i.e., up to four 8-bit outputs are fetched from output
memory).

To ease the usage of these instructions at the application level, we developed a
dedicated C++ library, named aimclib. The library is a collection of header files, but
its use in software applications only requires including the top-most header.
It contains wrappers for the instruction intrinsics as well as helper functions to handle
the queueing, dequeuing, and the mapping of matrices to the AIMC tile. Also present
are utilities for scaling inputs/outputs when not using int8_t types, performing
convolutions, and more. The library also has support for manipulating data
structures from the Eigen library [11].
As an example, below is a C++ pseudocode snippet for writing to the AIMC
accelerator, queueing an input array, performing a single MVM operation, and
dequeueing into an output array:

#include “aimclib.hh”

int main(int argc, char * argv[]) {
 …

 // Weights to be placed in the AIMC tile
 // with x/y dimension of N.
 int8_t ** aimcMatrix = = { { … }, …};

 // Mapping weights to the AIMC tile
 // with x, y offset of 1, 1 using aimclib.
 mapMatrix(1, 1, N, N, aimcMatrix);

 // Input to be queued into AIMC tile input memory
 // and output array to be dequeued into.
 int8_t * input = { … }, output = new int8_t[N];

 // Queue input array into the AIMC tile input memory
 // using aimclib.
 queueVector(sizeof(input) / sizeof(input[0]), input);

 // Perform MVM using aimclib.
 aimcProess();

 // Dequeue output memory contents into output array
 // using aimclib.
 dequeueVector(N, output);

 return 0;
}

Example application code interfacing with an AIMC accelerator using aimclib.

WiPLASH D5.2 H2020-FETOPEN-863337

www.wiplash.eu 20 September 29, 2021

5 System Architecture exploration

5.1 Experimental setup
To perform a first evaluation of the performance of wireless-enabled multi-CPU SoC
varying the transmission bandwidth, we considered AlexNet [5] as a first application
target. The application performs the inference of 10 possible objects on three
images from the CIFAR10 dataset [12]. Inputs are of dimensions 32x32x3 (32x32
images in RGB format). The outputs contain, for each image, one score for each of
the 10 classes.
The AlexNet CNN is composed of 9 layers,

● 5 Convolutional layers
● 2 Max pooling layers
● 2 Linear layers

The image below summarizes the application structure. It also shows how layers
are mapped to the multi-CPU system, whose characteristics are also detailed in this
section.

Figure 7: AlexNet layers characteristics and their mapping to CPUs
 in the considered benchmark application.

Hardware acceleration with AIMC tiles has been considered for the convolutional
layers, since those are the most computationally demanding. Similarly to the work
of [13], we mapped all the coefficients of a convolutional filter in a single array

WiPLASH D5.2 H2020-FETOPEN-863337

www.wiplash.eu 21 September 29, 2021

column of the AIMC tile, so that columns host the weights for different filters. In this
way, weight values, encoded in the memory elements of the AIMC tile, are static
after initialization at run-time, avoiding the need for costly reprogramming
operations. Each accelerator invocation is performed with a proper slice of the input
activations, in order to produce (1 × 1 × N_out) output values, where N_out is the
number of output channels.
More details on activation and weight size of convolutional layers are provided in
the table below.

Table 1: Characteristics of the Convolutional layers

in the benchmark application.

 Conv.
Layer 1
(CL1)

Conv.
Layer 2
(CL2)

Conv.
Layer 3
(CL3)

Conv.
Layer 4
(CL4)

Conv.
Layer 5
(CL5)

Output Depth 64 192 384 256 256

Output Width 30 28 26 24 10

Output Height 30 28 26 24 10

Kernel size 3x3 3x3 3x3 3x3 3x3

Stride 1 1 1 1 1

Padding 0 0 0 0 0

To maximize the application parallelism, the CNN execution is pipelined at the slice
level: the cores are able to process parallelly different horizontal slices of the
activations, as soon as they have received them from previous cores. As an
example, since the CL3 has a kernel size of 3, its first output row is computed by
CPU2 as soon as the first three rows of activation data are available from CL2,
produced by CPU1.
The experimental vehicle for the performed exploration is an 8-CPUs system, with
the following characteristics

● CPUs: 8x ARMv8 Minor, operating at 2.0 GHz
● L1 Instruction Cache: 8x private caches, 32 kB
● L1 Data Cache: 8x private caches, 32 kB
● L2 Cache: 512 kB, shared
● Main memory: 4 GB DDR4 RAM
● Operating system: Ubuntu LTS 16.04

WiPLASH D5.2 H2020-FETOPEN-863337

www.wiplash.eu 22 September 29, 2021

Figure 8: Block scheme of the simulated architecture, featuring 8 CPUs,

private L1 and shared L2 caches.
Each CPUs interfaces a tightly coupled AIMC accelerator

We modelled a single inter-CPUs wireless channel and considered bandwidths of
100 Gbps, 30 Gbps, 10 Gbps, 3 Gbps, 1 Gbps, 0.3 Gbps, and 0.1 Gbps. Such
bandwidths sustained the transmission of activations from one layer to the next.
AIMC hardware acceleration employs per-core AIMC tiles with 3456 Rows and 384
Columns, which allows mapping the matrix-vector multiplication required for the
computation of each AlexNet convolutional layer in an AIMC module.
For comparison purposes, we also modelled less capable CPU-only baseline
configurations, which did not feature AIMC acceleration.

5.2 Exploration outcomes
Table 2 reports a run-time comparison, for various wireless bandwidth constraints,
of the AlexNet application executing with and without AIMC acceleration. As
expected, hardware accelerated systems effectively speed-up execution, as they
can perform MVM in linear time.
Moreover, results confirm the intuition that, by increasing the computational
efficiency, hardware acceleration puts an increased strain on computational
resources. Indeed, when not employing AIMC accelerators no measured
improvement on run-time was detected when increasing the wireless bandwidth
past 0.3 GBps. Conversely, when AIMC tiles are integrated tangible run-time
reductions are found by increasing the available bandwidth up to 3 Gbps.

WiPLASH D5.2 H2020-FETOPEN-863337

www.wiplash.eu 23 September 29, 2021

Table 2: Run-time of the AlexNet benchmark on the simulated system, with and
without AIMC acceleration, for different wireless channel bandwidths.

Run-time
(s)

100
Gbps

30
Gbps

10
Gbps

3
Gbps

1
Gbps

0.3
Gbps

0.1
Gbps

w/o AIMC 14.9 14.9 14.9 14.9 14.9 14.9 15.0

with AIMC 0.357 0.357 0.359 0.385 0.473 1.41 4.31

Smaller available bandwidths indeed results in much higher collision rates among
wireless data transmissions, resulting in overall run-time slowdowns. Further
detailing our performance assessment, collisions are reported in Table 3 and 4 for
systems with and without AIMC accelerators, respectively. In each case, we
illustrate the collisions (and the collision rates) reported by each core, as well as the
aggregated results. A tangible discontinuity in collision rates can be noticed when
reducing the available bandwidth from 0.3 to 0.1 Gbps in the nonaccelerated case
(Table 3) , and from 10 to 3 Gbps in the accelerated one (Table 4).

Table 3: Packet collision on the simulated system without AIMC acceleration,
 for different wireless channel bandwidths.

Collisions
(%)

100
Gbps

30
Gbps

10
Gbps

3
Gbps

1
Gbps

0.3
Gbps

0.1
Gbps

Core 0 0
(0.0%)

0
(0.0%)

52
(0.030%)

389
(0.22%)

1238
(0.70%)

3210
(1.8%)

6982
(4.0%)

Core 1 0
(0.0%)

0
(0.0%)

101
(0.022%)

395
(0.086%)

992
(0.22%)

3856
(0.84%)

20003
(4.4%)

Core 2 0
(0.0%)

0
(0.0%)

74
(0.009%)

713
(0.091%)

1556
(0.20%)

3907
(0.50%)

14945
(1.9%)

Core 3 0
(0.0%)

1
(0.0%)

99
(0.022%)

789
(0.18%)

1050
(0.24%)

3300
(0.74%)

12467
(2.8%)

Core 4 0
(0.0%)

0
(0.0%)

44
(0.039%)

163
(0.14%)

366
(0.32%)

532
(0.47%)

873
(0.77%)

Core 5 0
(0.0%)

0
(0.0%)

8
(0.010%)

76
(0.098%)

293
(0.38%)

870
(1.1%)

3937
(5.1%)

WiPLASH D5.2 H2020-FETOPEN-863337

www.wiplash.eu 24 September 29, 2021

Core 6 0
(0.0%)

1
(0.010%)

8
(0.081%)

16
(0.16%)

81
(0.82%)

99
(1.0%)

116
(1.2%)

Core 7 0
(0.0%)

0 (
0.0%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

Total 0 (0.0%) 2 (0.0%) 386
(0.019%)

2541
(0.12%)

5576
(0.27%)

15774
(0.76%)

59323
(2.9%)

Table 4: Packet collision on the AIMC-accelerated simulated system
for different wireless channel bandwidths.

Collisions
(%)

100
Gbps

30
Gbps

10
Gbps

3
Gbps

1
Gbps

0.3
Gbps

0.1 Gbps

Core 0 0
(0.0%)

56
(0.032%)

58733
(33%)

119423
(68%)

155996
(89%)

163520
(93%)

178065
(101%)

Core 1 0
(0.0%)

118
(0.026%)

109449
(24%)

213024
(47%)

173066
(38%)

197703
(43%)

240758
(53%)

Core 2 0
(0.0%)

111
(0.014%)

88224
(11%)

263536
(34%)

267522
(34%)

407721
(52%)

515433
(66%)

Core 3 0
(0.0%)

114
(0.026%)

102617
(23%)

309487
(69%)

326081
(73%)

433698
(97%)

484556
(109%)

Core 4 0
(0.0%)

0
(0.0%)

25360
(22%)

90818
(80%)

90529
(80%)

106287
(94%)

120728
(107%)

Core 5 0
(0.0%)

0 (0.0%) 18635
(24%)

63313
(82%)

71768
(92%)

75196
(97%)

86405
(111%)

Core 6 0
(0.0%)

324
(3.3%)

3482
(35%)

5327
(54%)

7272
(73%)

8206
(83%)

10044
(101%)

Core 7 0
(0.0%)

0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (67%) 2 (67%) 2 (67%)

Total 0
(0.0%)

723
(0.035%)

406500
(20%)

1064928
(52%)

1092236
(53%)

1392333
(68%)

1635991
(79%)

WiPLASH D5.2 H2020-FETOPEN-863337

www.wiplash.eu 25 September 29, 2021

6 Conclusions and Perspectives

This deliverable marks the establishment of a novel full-system simulation
infrastructure extending gem5-X, able to model wireless-enabled and hardware-
accelerated SoCs.
The availability of such infrastructure, besides being a major undertaking on its own,
also has important consequences for the project as a whole. Indeed, the system
simulator allows the application-wide assessment of the benefits deriving from
different implementations of on-die and on-package wireless components, providing
valuable feedback to other WPs.
We are at present reaping the benefits deriving from this implementation effort. In
the context of the ongoing project task T5.3, we are now investigating further
benchmarks and wireless transmission mechanisms (e.g., retransmission-based
versus token-passing). Moreover, we are broadening our scope, considering further
dimensions and opportunities offered by CPU-to-CPU wireless links, including but
not limited to thermal balancing considerations.

WiPLASH D5.2 H2020-FETOPEN-863337

www.wiplash.eu 26 September 29, 2021

Bibliography

[1] Qureshi YM, Simon WA, Zapater M, Atienza D, Olcoz K. Gem5-X: A Gem5-
based system level simulation framework to optimize many-core platforms. In2019
Spring Simulation Conference (SpringSim) 2019 Apr 29 (pp. 1-12). IEEE.
[2] Qureshi, Yasir Mahmood, et al. Gem5-X: A Many-Core Heterogeneous
Simulation Platform for Architectural Exploration and Optimization. ACM
Transactions on Architecture and Code Optimization (TACO). 2021.
[3] Burr GW, Shelby RM, Sidler S, Di Nolfo C, Jang J, Boybat I, Shenoy RS,
Narayanan P, Virwani K, Giacometti EU, Kurdi BN. Experimental demonstration and
tolerancing of a large-scale neural network (165 000 synapses) using phase-change
memory as the synaptic weight element. IEEE Transactions on Electron Devices.
2015 Jul 7;62(11):3498-507.
[4] Ielmini, Daniele, and H-S. Philip Wong. In-memory computing with resistive
switching devices. Nature Electronics 1.6 (2018): 333-343.
[5] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems.
2012;25:1097-105.
[6] Binkert N, Beckmann B, Black G, Reinhardt SK, Saidi A, Basu A, Hestness J,
Hower DR, Krishna T, Sardashti S, Sen R. The gem5 simulator. ACM SIGARCH
computer architecture news. 2011 Aug 31;39(2):1-7.
[7] gem5 communication monitors. Available online: http://pages.cs.wisc.edu/
~swilson/gem5-docs/classCommMonitor.html
[8] Abadal S, Cabellos-Aparicio A, Alarcón E, Torrellas J. WiSync: An architecture
for fast synchronization through on-chip wireless communication. ACM SIGPLAN
Notices. 2016 Mar 25;51(4):3-17.
[9] Fernando V, Franques A, Abadal S, Misailovic S, Torrellas J. Replica: A wireless
manycore for communication-intensive and approximate data. InProceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems 2019 Apr 4 (pp. 849-863).
[10] Bavikadi S, Sutradhar PR, Khasawneh KN, Ganguly A, Pudukotai Dinakarrao
SM. A review of in-memory computing architectures for machine learning
applications. InProceedings of the 2020 on Great Lakes Symposium on VLSI 2020
Sep 7 (pp. 89-94).
[11] Eigen library. Available online: https://eigen.tuxfamily.org/
[12] Krizhevsky A, Hinton G. Learning multiple layers of features from tiny images.
2009.
[13] Yakopcic C, Alom MZ, Taha TM. Extremely parallel memristor crossbar
architecture for convolutional neural network implementation. In2017 International
Joint Conference on Neural Networks (IJCNN) 2017 May 14 (pp. 1696-1703). IEEE.

