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Executive Summary 
In its first part, the deliverable describes the rationale guiding the design of the 
WiPLASH system-level simulator. Then, it details the strategy employed to develop its 
novel modules, which simulate Analog In-Memory Computing (AIMC) memristive 
arrays and wireless in-die interconnects, respectively. These two components allow for 
the exploration of the performance of deep-learning applications on heterogeneous 
systems-on-chip featuring on-die wireless antennas. Hence, showcasing the added 
value provided by WP5 at this stage of the WiPLASH project. The last part of the 
deliverable reports an architectural exploration targeting the AlexNet benchmark, 
considering systems with different computation and communication capabilities. 
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Abbreviations and Acronyms 

AIMC Analog In-Memory Computing 

BW Bandwidth 
CL Convolutional Layer 
CNN Convolutional Neural Networks 
CPU Central Processing Unit 
FCFS First Come First Served 
ISA Instruction Set Architecture 
MVM Matrix-Vector Multiplication 
RGB Red Green Blue 
RRAM Resistive Random Access Memory 
SoC System on Chip 
SPM Scratchpad Memory 
WP Work Package 
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1 Introduction 

 

The multiscale simulation Work Package 5 (WP5) aims at demonstrating the 
performance provided by innovative computing architectures. It provides system-wide 
run-time execution metrics when executing complex applications, allowing the 
systematic exploration of the performance deriving from different settings of 
architectural parameters. 
In the context of the overall objectives of the WiPLASH project, particular focus of WP5 
is on (a) the modelling on-die and on-package wireless connection and (b) on the 
integration of Analog In-Memory Computing (AIMC) accelerator models.  
These two aspects are interdependent, as an increase in computation capability due 
to acceleration may increase the pressure on CPUs-to-memory and CPUs-to-CPUs 
links, shifting the performance bottleneck from computation to communication. The 
effectiveness of hardware acceleration is hence ultimately dependent on the available 
interconnect bandwidth.  
To co-explore these facets, in WP5 we are developing a full-system simulation 
infrastructure, based on gem5-X [1][2]. The simulator allows to rapidly define and run 
applications on hardware-accelerated and wirelessly enabled multicore systems.  
Simulations center on the execution of AI applications, in particular Convolutional 
Neural Networks (CNNs). Such a choice is motivated by CNNs high workload in terms 
of both computation and communication requirements, which makes them challenging 
targets for our explorations as reported in D4.1. Since the main computational hotspots 
of CNN applications are Matrix-Vector Multiplications (MVMs), we consider dedicated 
AIMC tiles [3][4] to speed up these computational patterns.  
Summing up, this deliverable illustrates the research and development activities 
undertaken in the context T5.2 and the first months of T5.3: 

● We developed a module modelling inter-CPU wireless communication, 
integrated within the gem5-X full-system simulation environment. The wireless 
communication module can be employed to define systems with heterogeneous 
(wireless and wired) interconnects. 

● We integrated the wireless communication and AIMC acceleration models (the 
latter being first presented in D5.1) in a unified framework. 

Targeting the AlexNet [5] CNN benchmark, we illustrate a preliminary system 
exploration, illustrating the impact of the wireless communication bandwidth on the run-
time of a multi-CPU system, with and without AIMC acceleration. 
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2 Enabling system co-design loops 

The first objective towards which the effort in WP5 is directed, is to integrate the 
findings on WP3 and WP4 from a more high-level viewpoint. This stance allows the 
evaluation of run-time metrics of entire systems, executing large applications. In this 
context, we are focusing both on the AIMC characterization and that of the wireless 
antennas and communication protocols. 
The second objective is to provide valuable feedback to the other WPs of the relative 
benefits of different arrangements, and where performance bottlenecks can be 
expected in different scenarios. Such information will allow other WPs to refine their 
requirements, avoiding the pitfalls of under- or over-designing hardware 
components and/or protocols. Indeed, it will provide important inputs for the design 
of the AIMC accelerator models (T4.1) and for the development of wireless MAC 
protocols (T3.3) and networks (T3.4). 

 

 
 

Figure 1: Implemented co-design loops. 

 
Feedback can be provided both with high-level metrics summarizing the run-time, 
packet collisions etc. of an execution on a target system. Indeed, Figure 2 shows a 
graph illustrating the wireless transmission bandwidth requirements originating from 
a multi-CPU system executing AlexNet inference, where the different convolutional, 
max-pooling and linear layers are mapped on CPUs 1-6, while CPU 0 is used to 
orchestrate the execution.  
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Figure 2: Example of aggregated statistics: wireless bandwidth for different CPUs. 

 
Detailed execution traces can also be obtained, for example illustrating time 
annotations for each wireless transmission among couples of CPUs. Such traces 
will complement the ones provided in WP4. The format of the traces is shown in 
Figure 3, which reports a brief excerpt. They are obtained by employing gem5 
components named Communication Monitors [7]. The obtained data is then filtered 
to derive the operations of interest, for example wireless transmission operations in 
Figure 3.  
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Figure 3: Excerpt of detailed execution trace. 

 
We aim at realizing the above-mentioned objectives while maintaining a high degree 
of configurability in the development of system simulation components. Indeed, both 
the AIMC and the wireless connection components are parameterizable across 
multiple dimensions e.g., regarding the size of the AIMC accelerators and the 
bandwidth of wireless communication links. Parameters can then be easily swept 
by modifying gem5-X system configurations, allowing for rapid and automated 
design space explorations.   
We aimed at supporting novel features in self-contained modules, hiding their 
implementation and only exposing clear and simple interfaces to system hierarchies. 
In this way, we minimized the effort required to define wirelessly communicating and 
AIMC-accelerated multi-CPU systems, as all standard gem5 components such as 
CPUs, caches, main memories etc. can be reused without modifications. Moreover, 
we allowed for easy upgrades of the supported features of the developed 
components, such as the integration of more complex or detailed protocols mirroring 
the progress in WP3. 
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3 Modelling wireless communication links in gem5-X 

We encapsulated the model of wireless transmission channels and protocols as a 
self-contained gem5-X component. Hence, as discussed in the previous section, 
wireless Systems-on-Chip (SoCs) can be defined while reusing existing gem5 
components for processors, buses, memories etc. [6]. Indeed, adding a wireless 
channel to a design simply consists in connecting, in the system configuration file, 
the system components (e.g. CPUs) that communicate wirelessly through the 
channel module. 
The code snippet below exemplifies the instantiation of a wireless channel. It 
contains the component declaration, which refers to the header file as an entry point 
to the module implementation. Moreover, the snippet reports the code lines 
instantiating the channel component with the desired parameters, and the ones 
connecting the created components with the CPUs and Scratchpad Memories 
(SPMs), as detailed further in this section. 
 

# Wireless Channel declaration 
   class WirelessChannel(MemObject): 

type = 'WirelessChannel' 
cxx_header = "mem/wireless_channel.hh" 

  ... 
 
# Instantiation of a Wireless Channel 
   system.wl_channel =  

         WirelessChannel.WirelessChannel( 
             bandwidth = options.wireless_bandwidth, 

           <...other parameters...>  
       ) 
 
# Connecting the channel to the crossbars in the CPU and SPM  
# sides 
     system.cpu_channel_bus.master = system.wl_channel.slave 
     system.channel_spm_bus.slave = system.wl_channel.master 

 

Excerpt of system configuration file instantiating a wireless channel among 
multiple CPUs. 

 
Our focus is to reproduce two defining characteristics of CPU-to-CPU wireless links: 
      - limitations in bandwidth 
      - collisions when multiple CPUs try to transmit data through the same channel 

at the same time. 
From a high-level perspective, the module employs three main components: buffers 
(realized as SPMs) are employed to store the data being received by each 
processor, while crossbars connect buffers, CPUs, and the wireless channel model, 
as illustrated in Figure 4. Such implementation allows decoupling the content of the 
transmitted data, the connectivity among CPUs, and the characteristic of the 
wireless channel. In particular, the latter is only described in the wireless channel 
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block, minimizing the effort required to extend our implementation and support 
different protocol designs [8] [9]. As an example, while at present we only support 
retransmission-based mechanisms, our approach can easily be extended to token-
based ones. 
In more detail, in order to model the wireless transmission, we assign a buffer to 
each of the connected CPUs. A write operation from a CPU to the buffer of a 
different CPU is interpreted as a wireless transmission, and thus the limitations of 
bandwidth and packet collisions are considered for the communication. On the other 
hand, we allow direct, non-wireless read and write from a CPU to its own buffer, as 
these are interpreted as local accesses. All CPU-buffers data traffic goes through 
the wireless channel model. The module will then decide whether the access is local 
or remote, depending on the CPU that initiated it and the access address. 
The wireless channel module (see again Figure 4) presents two ports, facing distinct 
crossbars2, one for the CPUs side and the other for the buffers side. Crossbars are 
idealized (i.e., they have no associated delay), in order not to influence the timing 
behavior of the wireless communication. 
 

 
 

Embedded in the wireless channel module is a transmitter unit which serves the 
incoming write request packets and enables the modelling of bandwidth and 
collisions. The transmitter is busy for a time corresponding to the available 
transmission bandwidth, attempting to forward data packets to their destination. If 
there is no collision, the release of the transmitter signals the successful completion 
of the wireless transmission. The transmission time (T) of the forwarding function is 
set accordingly to the size of the packet and the modelled bandwidth (BW) of the 
wireless channel, according to the following formula: 

 

 
2 Crossbar components are used in gem5 to model many-to-many connections 

Figure 4: Block scheme and architecture of the developed wireless model  
gem5-X component. 
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T = Size (packet) / BW 

 
The transmitter will reject packets if it is busy. This can be interpreted as: 

1. Reaching the bandwidth limit of the channel, if the CPU originating the 
rejected packet is the same as the one transmitting.  

2. A collision of packets, if the source of the new packet is different to the one 
of the packet being transmitted. This is equivalent to two or more different 
CPUs trying to wirelessly transmit at the same time.  

In both cases, the CPU originating the rejected packet is stalled, and is signaled to 
retry the transmission once the current transmission has been served. This strategy 
therefore implements a retransmission-based protocol. 
The ownership of the transmitter unit is obtained by CPUs in a First-Come First-
Served (FCFS) fashion. In case the transmitter is idle and two CPUs try to transmit 
in the same cycle, the order of ownership is sorted following gem5-X’s order of core 
execution, in which the CPUs are identified from lower to the higher indices. 
As depicted in Figure 5, to model the timing behavior of collisions, we delay the write 
responses for a random time in a (parameterizable) window, which results in 
colliding transmissions to incur in random delays. As again shown in Figure 5, re-
transmission attempts can also collide. Hence, we repeat the above-mentioned 
strategy iteratively increasing the window size, following an exponential backoff 
approach. 
 

 
 

Figure 5: Timing diagram of collision modelling. 

 
Collisions are detected by checking if a) a CPU is trying to use the transmitter while 
it is owned by other CPUs, or b) a CPU is trying to use the transmitter while previous 
collisions are still being resolved. In both cases, involved packets are delayed 
proportionally to the total number of ongoing collisions: 

delay = (n-1)× W 
where n is the number of collisions to be addressed and W is the minimum window 
size, which is enough waiting time for all the colliding transmissions to have been 
served by the transmitter. After the delay, each response packet of the colliding 
transmissions is assigned a random time to be forwarded to the source CPU. When 
the assigned transmission time arrives, we check for overlaps with the other 

Fig.  SEQ Fig. \* ARABIC 2 – Simple model of a collision avoidance 
strategy 
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scheduled retransmission. If an overlap occurs, the involved packets are reassigned 
at random retransmission times; otherwise, the transmission of the packet 
successfully ends. The random transmission time is chosen within an interval whose 
size is decided via the exponential backoff algorithm. The minimum interval size (W) 
and the base of the exponent for backoff can be configured. In our first experiments, 
we fixed the retry window values to: 

  (2c -1)× W,  where c is the number of retries incurred by a packet.  
This approach makes colliding more unlikely the more retransmissions occur. 
In Section 5 we explore the performance of different CPU-to-CPU wireless 
bandwidths by targeting an 8-CPU system in which all cores are connected to each 
other through a wireless channel. We use per-core Scratchpad Memories (SPMs) 
connected to the buffer port of the wireless channel model to enable inter-CPU 
transmissions. Applications index memory locations in the SPM address ranges (as 
determined by the system configuration script) in order to write and read to local and 
remote SPMs. A write to a remote SPMs triggers a wireless transmission. 
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4 Modeling AIMC tiles in the target architecture 

Analog In-Memory Computing (AIMC) accelerators are formed by a series of vertical 
and horizontal lines in a pattern carrying input and output signals, as depicted in 
Figure 6. At each intersection, programmable Resistive RAMs (RRAMs) connect 
horizontal and vertical wires. The current at the outputs of the accelerator is a linear 
combination of the voltages of the inputs, weighted according to the resistance 
values. Analog-to-digital converters are employed to sense these currents. Hence, 
a N-Input, M-output AIMC embeds NxM contacts (programmable resistances).  At 
each execution it computes at once the Matrix-Vector Multiplication (MVM) of the 
vector of the inputs with the matrix encoded in the resistances.  
 

 
 

Figure 6: Idealized schematic of an AIMC architecture. 

 
The design and integration of AIMC tiles are active and promising research topics 
[10]. AIMC is particularly suited for the acceleration of AI applications such as CNNs, 
as these are strongly relying on MVM operations. An advanced prototype AIMC 
implementation was recently demonstrated by IBM research[3].  
 
We firstly introduced our gem5-X AIMC model in D5.1. We now showcase in Section 
5 its use in the context of a multi-core wireless system. In our gem5-X 
implementation, we model AIMC tiles as peripheral input/output components, which 
can be embedded in single- or multi-CPU systems. Moreover, one or multiple AIMC 
tiles can be instantiated for each CPU. AIMC models can be parametrized through 
the system configuration file in terms of width and height, which correspond to the 
desired number of inputs and outputs, all represented as 8-bit integers.  
 
Below is an excerpt of a gem5-X example configuration script specifying and 
integrating an AIMC accelerator. The accelerator is first declared as an available 
system component, whose characteristics are defined in the “AIMC.hh” header file. 
Instances (e.g. “aimc”) are then instantiated, and they are finally connected using 
the desired links (“bus.master” in the example). 
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  # AIMC tile declaration 
   class AnalogComputationalMemory(BasicPioDevice): 
       type = 'AnalogInMemoryComputing' 
       cxx_header = "dev/arm/AIMC.hh" 
       ... 
 
  # Instantiation of an AIMC accelerator 
   aimc = AnalogComputationalMemory() 
 
  # Connecting the AIMC tile on the bus. 
   self.aimc.pio= bus.master 
 

Excerpt of system configuration file instantiating an AIMC accelerator module.  
 
 
CPUs and AIMC tiles are tightly coupled, so that a CPU can only interface with its 
local AIMC tile, governing them via special opcodes extending the ARMv8 ISA. Such 
instructions allow managing the transfer of inputs and outputs to/from AIMC tiles, as 
well as to program the resistances encoding the weights matrix. It has to be noted 
that changing the resistance values is a timing and energy intensive operation, both 
because of the electrical characteristics of resistive memories and because NxM 
connections are present in the AIMC tiles. This motivates our choice, in Section 5, 
of not modifying them during the benchmark execution, mapping instead different 
matrix-vector-multiplications (realizing different model layers) in different AIMCs 
tiles. 
 
The 5 new custom instructions added to the ARMv8 ISA are termed CM_QUEUE, 
CM_DEQUEUE, CM_PROCESS, CM_P_W, and CM_P_R.  CM_QUEUE and 
CM_DEQUEUE queues 8-bit inputs and dequeue 8-bit outputs from the input and 
output memories of the AIMC tile, respectively.  CM_PROCESS signals the AIMC 
tiles to perform the constant-time MAC operations using the queued input memory 
values, and then store the output in the output memory.  This operation also clears 
the input memory.  Finally, the CM_P_R and CM_P_W instructions read and write 
parameters directly to the AIMC tile, respectively.  Parameter writes are used to 
program the AIMC tile while parameter reads are only used for debugging purposes. 
 
The usual flow of these instructions is as follows:  
1. During the programming/setup phase of an application, CM_P_W is called to 

write weights/parameters into the AIMC tile. 
2. Inputs are queued into the input memory via the CM_QUEUE instruction.  The 

instruction accepts a 32-bit value, so that up to four 8-bit inputs can be queued 
into the input memory with one instruction call.  It has a latency of 1 ns per call. 

3. Once the input memory is set, CM_PROCESS is called to perform the MVM, 
clear in the input memory, and store the output in output memory. Only one 
instruction invocation is needed to compute the entire matrix-vector 
multiplication, which has a latency of 100 ns per call 
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4. Finally, the CM_DEQUEUE instruction is called to fetch the outputs in a similar 
manner to CM_QUEUE (i.e., up to four 8-bit outputs are fetched from output 
memory). 

To ease the usage of these instructions at the application level, we developed a 
dedicated C++ library, named aimclib. The library is a collection of header files, but 
its use in software applications only requires including the top-most header.    
It contains wrappers for the instruction intrinsics as well as helper functions to handle 
the queueing, dequeuing, and the mapping of matrices to the AIMC tile. Also present 
are utilities for scaling inputs/outputs when not using int8_t types, performing 
convolutions, and more. The library also has support for manipulating data 
structures from the Eigen library [11]. 
As an example, below is a C++ pseudocode snippet for writing to the AIMC 
accelerator, queueing an input array, performing a single MVM operation, and 
dequeueing into an output array: 

 
 
#include “aimclib.hh” 
 
int main(int argc, char * argv[]) { 
 … 
 
 // Weights to be placed in the AIMC tile 
          // with x/y dimension of N. 
 int8_t ** aimcMatrix = = { { … }, …}; 
 
 // Mapping weights to the AIMC tile 
          // with x, y offset of 1, 1 using aimclib. 
 mapMatrix(1, 1, N, N, aimcMatrix); 
 
 // Input to be queued into AIMC tile input memory  
          // and output array to be dequeued into. 
 int8_t * input = { … }, output = new int8_t[N]; 
 
 // Queue input array into the AIMC tile input memory  
          // using aimclib. 
 queueVector(sizeof(input) / sizeof(input[0]), input); 
 
 // Perform MVM using aimclib. 
 aimcProess(); 
 
 // Dequeue output memory contents into output array  
          // using aimclib. 
 dequeueVector(N, output); 
  
 return 0; 
} 
 

Example application code interfacing with an AIMC accelerator using aimclib. 
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5 System Architecture exploration  

5.1 Experimental setup 
To perform a first evaluation of the performance of wireless-enabled multi-CPU SoC 
varying the transmission bandwidth, we considered AlexNet [5] as a first application 
target. The application performs the inference of 10 possible objects on three 
images from the CIFAR10 dataset [12]. Inputs are of dimensions 32x32x3 (32x32 
images in RGB format).  The outputs contain, for each image, one score for each of 
the 10 classes. 
The AlexNet CNN is composed of 9 layers,  

● 5 Convolutional layers 
● 2 Max pooling layers 
● 2 Linear layers 

The image below summarizes the application structure. It also shows how layers 
are mapped to the multi-CPU system, whose characteristics are also detailed in this 
section. 
 

 

 
 

Figure 7: AlexNet layers characteristics and their mapping to CPUs 
 in the considered benchmark application. 

 
Hardware acceleration with AIMC tiles has been considered for the convolutional 
layers, since those are the most computationally demanding. Similarly to the work 
of [13], we mapped all the coefficients of a convolutional filter in a single array 
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column of the AIMC tile, so that columns host the weights for different filters. In this 
way, weight values, encoded in the memory elements of the AIMC tile, are static 
after initialization at run-time, avoiding the need for costly reprogramming 
operations. Each accelerator invocation is performed with a proper slice of the input 
activations, in order to produce (1 × 1 × N_out) output values, where N_out is the 
number of output channels.  
More details on activation and weight size of convolutional layers are provided in 
the table below. 

 
Table 1: Characteristics of the Convolutional layers  

in the benchmark application. 

  Conv. 
Layer 1 
(CL1) 

Conv. 
Layer 2 
(CL2) 

Conv. 
Layer 3 
(CL3) 

Conv. 
Layer 4 
(CL4) 

Conv. 
Layer 5 
(CL5) 

Output Depth 64 192 384 256 256 

Output Width 30 28 26 24 10 

Output Height 30 28 26 24 10 

Kernel size 3x3 3x3 3x3 3x3 3x3 

Stride 1 1 1 1 1 

Padding 0 0 0 0 0 

 
 

To maximize the application parallelism, the CNN execution is pipelined at the slice 
level: the cores are able to process parallelly different horizontal slices of the 
activations, as soon as they have received them from previous cores. As an 
example, since the CL3 has a kernel size of 3, its first output row is computed by 
CPU2 as soon as the first three rows of activation data are available from CL2, 
produced by CPU1. 
The experimental vehicle for the performed exploration is an 8-CPUs system, with 
the following characteristics 

● CPUs: 8x ARMv8 Minor, operating at 2.0 GHz 
● L1 Instruction Cache: 8x private caches, 32 kB 
● L1 Data Cache: 8x private caches, 32 kB 
● L2 Cache: 512 kB, shared 
● Main memory: 4 GB DDR4 RAM  
● Operating system: Ubuntu LTS 16.04 
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Figure 8: Block scheme of the simulated architecture, featuring 8 CPUs,  

private L1 and shared L2 caches.  
Each CPUs interfaces a tightly coupled AIMC accelerator 

 

 
We modelled a single inter-CPUs wireless channel and considered bandwidths of 
100 Gbps, 30 Gbps, 10 Gbps, 3 Gbps, 1 Gbps, 0.3 Gbps, and 0.1 Gbps. Such 
bandwidths sustained the transmission of activations from one layer to the next. 
AIMC hardware acceleration employs per-core AIMC tiles with 3456 Rows and 384 
Columns, which allows mapping the matrix-vector multiplication required for the 
computation of each AlexNet convolutional layer in an AIMC module.  
For comparison purposes, we also modelled less capable CPU-only baseline 
configurations, which did not feature AIMC acceleration. 
 

5.2 Exploration outcomes  
Table 2 reports a run-time comparison, for various wireless bandwidth constraints, 
of the AlexNet application executing with and without AIMC acceleration. As 
expected, hardware accelerated systems effectively speed-up execution, as they 
can perform MVM in linear time.  
Moreover, results confirm the intuition that, by increasing the computational 
efficiency, hardware acceleration puts an increased strain on computational 
resources. Indeed, when not employing AIMC accelerators no measured 
improvement on run-time was detected when increasing the wireless bandwidth 
past 0.3 GBps. Conversely, when AIMC tiles are integrated tangible run-time 
reductions are found by increasing the available bandwidth up to 3 Gbps. 
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Table 2: Run-time of the AlexNet benchmark on the simulated system, with and 
without AIMC acceleration, for different wireless channel bandwidths. 

 

Run-time 
(s) 

100 
Gbps 

30 
Gbps 

10 
Gbps 

3 
Gbps 

1 
Gbps 

0.3 
Gbps 

0.1 
Gbps 

w/o AIMC 14.9 14.9 14.9 14.9 14.9 14.9 15.0 

with AIMC 0.357 0.357 0.359 0.385 0.473 1.41 4.31 

 
 
Smaller available bandwidths indeed results in much higher collision rates among 
wireless data transmissions, resulting in overall run-time slowdowns. Further 
detailing our performance assessment, collisions are reported in Table 3 and 4 for 
systems with and without AIMC accelerators, respectively. In each case, we 
illustrate the collisions (and the collision rates) reported by each core, as well as the 
aggregated results. A tangible discontinuity in collision rates can be noticed when 
reducing the available bandwidth from 0.3 to 0.1 Gbps in the nonaccelerated case 
(Table 3) , and from 10 to 3 Gbps in the accelerated one (Table 4). 
 

Table 3: Packet collision on the simulated system without AIMC acceleration, 
 for different wireless channel bandwidths. 

 

Collisions  
(%) 

100 
Gbps 

30 
Gbps 

10 
Gbps 

3 
Gbps 

1 
Gbps 

0.3 
Gbps 

0.1 
Gbps 

Core 0 0  
(0.0%) 

0  
(0.0%) 

52 
(0.030%) 

389 
(0.22%) 

1238 
(0.70%) 

3210 
(1.8%) 

6982 
(4.0%) 

Core 1 0  
(0.0%) 

0  
(0.0%) 

101 
(0.022%) 

395 
(0.086%) 

992 
(0.22%) 

3856 
(0.84%) 

20003 
(4.4%) 

Core 2 0  
(0.0%) 

0  
(0.0%) 

74 
(0.009%) 

713 
(0.091%) 

1556 
(0.20%) 

3907 
(0.50%) 

14945 
(1.9%) 

Core 3 0  
(0.0%) 

1  
(0.0%) 

99 
(0.022%) 

789 
(0.18%) 

1050 
(0.24%) 

3300 
(0.74%) 

12467 
(2.8%) 

Core 4 0  
(0.0%) 

0  
(0.0%) 

44 
(0.039%) 

163 
(0.14%) 

366 
(0.32%) 

532 
(0.47%) 

873 
(0.77%) 

Core 5 0  
(0.0%) 

0  
(0.0%) 

8 
(0.010%) 

76 
(0.098%) 

293 
(0.38%) 

870 
(1.1%) 

3937 
(5.1%) 
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Core 6 0  
(0.0%) 

1 
(0.010%) 

8 
(0.081%) 

16 
(0.16%) 

81 
(0.82%) 

99 
(1.0%) 

116 
(1.2%) 

Core 7 0  
(0.0%) 

0 ( 
0.0%) 

0  
(0.0%) 

0  
(0.0%) 

0  
(0.0%) 

0  
(0.0%) 

0  
(0.0%) 

Total 0 (0.0%) 2 (0.0%) 386 
(0.019%) 

2541 
(0.12%) 

5576 
(0.27%) 

15774 
(0.76%) 

59323 
(2.9%) 

 
 
 

Table 4: Packet collision on the AIMC-accelerated simulated system 
for different wireless channel bandwidths. 

 

Collisions  
(%) 

100 
Gbps 

30 
Gbps 

10 
Gbps 

3 
Gbps 

1 
Gbps 

0.3 
Gbps 

0.1 Gbps 

Core 0 0 
(0.0%) 

56 
(0.032%) 

58733 
(33%) 

119423 
(68%) 

155996 
(89%) 

163520 
(93%) 

178065 
(101%) 

Core 1 0 
(0.0%) 

118 
(0.026%) 

109449 
(24%) 

213024 
(47%) 

173066 
(38%) 

197703 
(43%) 

240758 
(53%) 

Core 2 0 
(0.0%) 

111 
(0.014%) 

88224 
(11%) 

263536 
(34%) 

267522 
(34%) 

407721 
(52%) 

515433 
(66%) 

Core 3 0 
(0.0%) 

114 
(0.026%) 

102617 
(23%) 

309487 
(69%) 

326081 
(73%) 

433698 
(97%) 

484556 
(109%) 

Core 4 0 
(0.0%) 

0  
(0.0%) 

25360 
(22%) 

90818 
(80%) 

90529 
(80%) 

106287 
(94%) 

120728 
(107%) 

Core 5 0 
(0.0%) 

0 (0.0%) 18635 
(24%) 

63313 
(82%) 

71768 
(92%) 

75196 
(97%) 

86405 
(111%) 

Core 6 0 
(0.0%) 

324 
(3.3%) 

3482 
(35%) 

5327 
(54%) 

7272 
(73%) 

8206 
(83%) 

10044 
(101%) 

Core 7 0 
(0.0%) 

0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (67%) 2 (67%) 2 (67%) 

Total 0 
(0.0%) 

723 
(0.035%) 

406500 
(20%) 

1064928 
(52%) 

1092236 
(53%) 

1392333 
(68%) 

1635991 
(79%) 
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6 Conclusions and Perspectives 

This deliverable marks the establishment of a novel full-system simulation 
infrastructure extending gem5-X, able to model wireless-enabled and hardware-
accelerated SoCs.  
The availability of such infrastructure, besides being a major undertaking on its own, 
also has important consequences for the project as a whole. Indeed, the system 
simulator allows the application-wide assessment of the benefits deriving from 
different implementations of on-die and on-package wireless components, providing 
valuable feedback to other WPs. 
We are at present reaping the benefits deriving from this implementation effort. In 
the context of the ongoing project task T5.3, we are now investigating further 
benchmarks and wireless transmission mechanisms (e.g., retransmission-based 
versus token-passing). Moreover, we are broadening our scope, considering further 
dimensions and opportunities offered by CPU-to-CPU wireless links, including but 
not limited to thermal balancing considerations. 
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