
Horizon 2020 Program (2014-2020)
FET-Open – Novel ideas for radically new technologies

FETOPEN-01-2018-2019-2020

Architecting More than Moore – Wireless Plasticity for Massive
Heterogeneous Computer Architectures †

D4.2: In-Memory Accelerator

Contractual Date of Delivery 31/03/2021
Actual Date of Delivery 30/03/2021
Deliverable Dissemination Level Public
Editor Davide Rossi (UNIBO)
Contributors UNIBO (leader), IBM
Quality Assurance Sergi Abadal (UPC)

†This project is supported by the European Commission under the Horizon 2020 Program with Grant
agreement no: 863337.

Ref. Ares(2021)2212505 - 30/03/2021

WiPLASH D4.2 H2020-FETOPEN-863337

Document Revisions & Quality Assurance

Deliverable Number D4.2
Deliverable Responsible UNIBO
Work Package WP4
Main Editor Davide Rossi

Internal Reviewers
1. Alexandre Levisse (EPFL)
2. Mohamed Elsayed (RWTH)

Revisions

Version Date By Overview
1.0.0 04/03/2021 Davide Rossi (UNIBO First draft
1.0.1 04/03/2021 Gianmarco Ottavi (UNIBO) Added cluster description
1.0.2 04/03/2021 Geethan Karunaratne (IBM) Added IMA contribution
1.0.3 04/03/2021 Davide Rossi (UNIBO) Finalized draft
1.1.0 30/03/2021 Davide Rossi (UNIBO),

Geethan Karunaratne (IBM)
Revised version addressing internal
review comments

Legal Disclaimer
The information in this document is provided “as is”, and no guarantee or warranty
is given that the information is fit for any particular purpose. The above referenced
consortium members shall have no liability to third parties for damages of any kind
including without limitation direct, special, indirect, or consequential damages that may
result from the use of these materials subject to any liability which is mandatory due
to applicable law. ©2019 by WiPLASH Consortium.

www.wiplash.eu 2 March 30, 2021

Executive Summary

The main subject of D4.2 is to describe the analog in-memory computing cores used
as building blocks for wirelessly enabled massively parallel heterogeneous architec-
tures explored in WiPlash. It first describes the in-memory computing arrays as well
as their main performance metric, correlated with silicon measurements, and the dif-
ferent models used for system-level integration and evaluation. Then it describes the
integration of the analog in memory computing cores into a software-programmable
cluster of RISC-V processors, highlighting the configurable of the programming inter-
face and the interactions between analog and digital domains needed to accomplish
not trivial computing tasks. Finally it presents an exploration of the proposed cluster
and its evaluation on the basis of a MobileNetV2 bottleneck benchmark, represen-
tative of an emerging amount of modern DNN workloads, highlighting the need for
more tightly coupled integration of analog and digital accelerators in next generation
computing systems. These findings will be exploited in the second half of the project
to develop the target heterogeneous architectures. This deliverable is related to task
T4.2: ”In-Memory Computing Accelerator”, M6-M18, led by IBM and T4.3 ”Accelera-
tors Interface”, M6-M18 led by UNIBO. All the activities related to these two tasks have
been successfully completed. The output of the activities related to this deliverable
will be used as input for developing the whole massively parallel system architecture
in T4.1.

3

Abbreviations and Acronyms

CNN Convolutional Neural Network

IMA In-Memory Accelerator

TCDM Tightly Coupled Data Memory

HWPE Hardware Processing Engine

PCM Phase Changing Memory

IFM Input Feature Map

OFM Output Feature Map

DNN Deep Neural Network

AIMC Analog In-Memory Computing

MAMP Mythic Analog Matrix Processors

4

WiPLASH D4.2 H2020-FETOPEN-863337

The WiPLASH consortium is composed by

UPC Coordinator Spain
IBM Beneficiary Switzerland
UNIBO Beneficiary Italy
EPFL Beneficiary Switzerland
AMO Beneficiary Germany
UoS Beneficiary Germany
RWTH Beneficiary Germany

www.wiplash.eu 5 March 30, 2021

Contents

1 Introduction 10

2 In-memory accelerator crossbar 12
2.1 Crossbar performance metrics . 13
2.2 PCM device dynamics and modeling . 15
2.3 Simulation models . 17

3 Heterogeneous IMA-based Computing Cluster 19
3.1 IMA Subsystem Architecture . 19
3.2 IMA Internal Registers . 21
3.3 CNN configuration for IMA . 21

4 Results & MobileNetV2 Case Study 26
4.1 Experimental Setup . 26
4.2 Baseline IMA performance . 26
4.3 Case Study: MobilenetV2 . 28
4.4 MobileNetV2 Bottlenecks Results . 31

5 Conclusion 34

6

List of Figures

2.1 (a) standard matrix vector multiplication where vector a is multiplied with
matrix X to output vector b (b) Illustration of matrix vector multiplication
operation on differential PCM crossbar array. Its placement within the
IMA subsystem is highlighted on the left. 12

2.2 (a) Different ’phases’ of PCM materials. On the right is the PCM device
in low resistance crystalline phase, on the left it is in high resistance
amorphous phase grown like a head of a mushroom. The phase can
be shifted between either states by applying electrical pulses of specific
shapes. (b) SET state measurements from 4 example devices, with
their fitted curves . 15

2.3 (a) Simulation framework in which PCM devices are more accurately
modelled in python (b) Simulation framework in which PCM crossbar
is modeled in SystemVerilog to achieve higher simulation speed at the
expense of less accurate device conductance modeling. 17

3.1 Heterogeneous Cluster and In-memory Accelerator subsystem. 20
3.2 IMA mapping of standard convolutions on the PCM crossbar. Below a

timeline of the execution model. 21
3.3 a): PCM Array subdivided in Plots, b): Controller FSM. 21
3.4 CNN remapping in the IMA. 24
3.5 CNN flow-chart for programming, and executing a CNN layer. 25

4.1 Performance between different IMA iterations on CNN layer. 27
4.2 Performance on standard convolution: Software execution (SW) vs IMA

acceleration (frequency = 250MHz). The N/N configuration indicates
the number of load and store master ports. 27

4.3 Components of MobilenetV2 bottleneck block with stride = 1 and map-
ping structure in the PCM crossbar for depthwise and 1x1 layers. For
depthwise, all the gray rectangles are padding required for computing
more than 1 channel per job. 28

4.4 Show the different depthwise mapping: A) Shows 4 channel per job
mapping; B) Shows multiple pixel per job mapping; C) Mix multiple chan-
nel per job with the mapping in B). 29

4.5 Mapping for depthwise on IMA. On the left: Number of Parameters vs
Number of Channels per job. On the Right: Number of Parameters vs
Number of pixels per job. 29

7

WiPLASH D4.2 H2020-FETOPEN-863337

4.6 Thorough-put of the IMA on Depthwise layer vs. Amount of Parameters
for a layer with 384 channels and 14x14 size. The orange line represent
the utilization of the Array that is calculated by number of weights ÷
total size were the total size includes the padding. 30

4.7 Performance results measured in GOPS. The arrow indicates the per-
formance difference with the most efficient implementation. 31

4.8 Performance results measured in TOPS. The circle highlights the top
performing configuration. 32

4.9 Performance results measured in GOPS/mm2. The circle highlights the
top performing configuration. 32

4.10 Impact on performance of the various Bottleneck phases (hwc to chw
only needed on SW variants for depthwise). Results are taken using
4/4 port configurations at 250 MHz. 33

www.wiplash.eu 8 March 30, 2021

List of Tables

2.1 Performance metrics of the accelerator core 14
2.2 Estimated values of the model parameters. 16

3.1 List of the programmable registers of the IMA. 22

4.1 Implementation Results . 26

9

1. Introduction

Analog In-Memory Computing (AIMC) is an emerging paradigm holding promise to
overcome the well-known von Neumann bottleneck by executing operations such as
matrix-vector products in the analog domain within a crossbar arrangement, with mil-
lions of operations executed simultaneously. Both charge-based memory technolo-
gies (e.g. SRAM, DRAM, and flash), and resistance-based memory technologies (e.g.
RRAM, PCM, and STT-MRAM) can serve as elements for such computational units [1].

Among several application domains, demonstrations of AIMC-based architectures
have appeared in the field of Deep Neural Network (DNN) inference acceleration,
showing outstanding peak energy efficiency in the order of hundreds of TOPS/W
[1, 2]. An early market industrial example is represented by Mythic [3], claiming ef-
ficiency of 4 TOPS/W exploiting 8-bit flash-based Mythic Analog Matrix Processors
(MAMP) arranged as a systolic array, all connected through a mesh topology network
on chip. From a research perspective, several approaches claimed tens to hundreds of
TOPS/W by exploiting several different approaches, with a quite diverse set of choices
in levels of numerical precision and memory technologies [1,2].

However, several fundamental challenges are still open to achieve the claimed lev-
els: the intrinsic variability of analog computing both in the charge based and resistive
domain [1]; difficulties in dealing with low-precision computations that are often the
only ones supported by AIMC-based architectures [1]; the necessity of specialized
training [4]; the poor flexibility of IMC, that is well matched only for a limited set of
primitives such as matrix-vector multiplications [2]. As a result, most AIMC-based ar-
chitectures fabricated so far have been demonstrated on trivial neural networks (up to
ten layers) trained on single layers or simple data sets such as CIFAR-10 or MNIST [1],
which are not representative of real-life, DNN-based applications.

This report focuses on the architectural challenges described above. To tackle
the limited flexibility of AIMC-based computing, some architectures couple general-
purpose processors to analog in-memory computing cores. This allows extending the
functionality of In-Memory Accelerators (IMA) creating heterogeneous analog/digital
computing tiles, connected to the system bus [3, 5]. However, performing linear oper-
ators with accelerators such as IMA moves the bottleneck of the computation to the
digital part. For this reason, augmenting the heterogeneous cluster with a single core
might not be sufficient to sustain the computing requirements of IMAs; moreover, low
bandwidth and high communication latency between the processor and the IMA might
form a remarkable bottleneck for heterogeneous computing.

This deliverable presents the design and modelling of an IMA, and the new paradigm
for AIMC-based heterogeneous computing envisioned in WiPlash, where an IMA is in-
tegrated within a parallel tightly-coupled cluster of RISC-V processors. We present
a design space exploration based on a key building block of the MobileNetV2 CNN,
representative for a wide range of modern DNNs leveraging depthwise convolutions

10

WiPLASH D4.2 H2020-FETOPEN-863337

to reduce the size of the model by up to one order of magnitude with respect to first-
generation models. We analyze the architectural bottlenecks for MobilenetV2 execu-
tion on such heterogeneous system. The IMA on itself can reach outstanding per-
formance and efficiency peaks that are dictated by the size of the activated crossbar
given the constant time to output for analog computations. But, the cost for auxiliary
computation, data marshalling and inefficiency of depthwise layers from a significant
constriction for efficiency (80%) suggesting to further extend these clusters with spe-
cialized digital accelerators better tuned for these functions that will be explored in the
rest of WiPLASH project.

The rest of the report is organized as follows: In the first part of the report, the pro-
posed system architecture containing the in-memory accelerator (IMA) is explained
using a bottom-up approach. Chapter 2 will describe the operation of the In-memory
computing PCM crossbar.The performance and energy modeling aspects at the cross-
bar level is discussed here. Then in Section 2.2 we dive into the details of PCM device
level dynamics. The simulation models that were developed capturing these dynamics
are discussed in Section 2.3. Chapter 3 briefly describes the heterogeneous cluster
at the top level. Section 3.1 details the surrounding of the IMA crossbars and explains
the key micro-architectural components: the controller, streamer and the engine. It
also outlines interfacing architecture of the IMA subsystem with the rest of the cluster.
The third part of the report, Chapter 4, is dedicated to a case study conducted using
MobileNetV2 as an example application. Alternative programming strategies exploiting
resources and performance tradeoffs in the IMA crossbar as well as those in rest of
the cluster with varying degrees of workload distribution is studied to this end.

www.wiplash.eu 11 March 30, 2021

2. In-memory accelerator crossbar

In this section we introduce the crossbar architecture of the In-Memory Accelera-
tor (IMA). It also covers how a basic matrix vector multiplication operation can be
performed with the crossbar using in-memory computing techniques.

+ + +

ADC Array

D
A
C
 D

ri
ve

rs

In
p
u
t

B
u
ff

er
s

Output Buffers

b'1 b'2 b'W

a'1

a'2

a'H

V1

V2

VH

IWI2I1

{ADC_HIGH, ADC_LOW}

V_REF

X1,1 X1,2 X1,W

X2,1 X2,2 X2,W

XH,1 XH,2 XH,W

a1 a2 aH =

b1

b2

bW

G-2,1G+2,1

CONDUCTANCE_MAX

(a)

(b)

Figure 2.1: (a) standard matrix vector multiplication where vector a is multiplied with
matrix X to output vector b (b) Illustration of matrix vector multiplication operation on
differential PCM crossbar array. Its placement within the IMA subsystem is highlighted
on the left.

As shown in Fig. 2.1, the crossbar supports programming elements of a matrix on
the cross points of the crossbar, with a maximum matrix size of 1000 in each of the
two dimensions due to fabrication limits of the crossbar array. Each cross point has a
dual-Phase Changing Memory (PCM) device unit cell. A positive valued element in the
matrix is programmed on the left PCM device of the unit cell with the corresponding
conductance value while right PCM device is reset to a zero conductance value. A
negative valued element in the matrix is programmed on the right PCM device of the
unit cell while the left PCM device of the unit cell in this case is reset to a zero conduc-
tance value. The value of the matrix element is converted to PCM conductance value
using the formula given in Eq. 2.1.

12

WiPLASH D4.2 H2020-FETOPEN-863337

{G+
i,j, G

−
i,j} =

{round(7|Xi,j |

Xmax
)Gmax

7
, 0} if Xi,j > 0

{0, round(7|Xi,j |
Xmax

)Gmax

7
} if Xi,j < 0

{0, 0} otherwise

(2.1)

where Xi,j ∈ R, i ≤ H height of the matrix, j ≤ W width of the matrix and
G+
i,j, G

−
i,j ∈ {0, Gmax

7
, 2Gmax

7
, 3Gmax

7
, 4Gmax

7
, 5Gmax

7
, 6Gmax

7
, Gmax} takes one of the seven pre-

defined multi-level conductance states or reset state. This allows packing 8 matrix
element values into a 32-bit wide peripheral data bus in a single cycle - each value
having 4 bits - a sign bit and 3bit magnitude.

The input vector a ∈ RH before sending through the streaming interface is quan-
tized to 8bit integer values as:

a’ = round(
a
127

) ∗ 127

where{a’ ∈ ZH | − 127 ≤ a’ ≤ 127}
(2.2)

The quantized input values are converted to analog voltage levels using digital-to-
analog converters (DAC) using Vi =

a′i VREF

127
, 0 ≤ i ≤ H − 1 where VREF represents

the maximum voltage a wordline is driven with. The Ohm’s law is then applied to each
resistive memory device located at cross points of the crossbar array. Transferring a
current given by i+/−i,j = Vi ∗G+/−

i,j to the corresponding bitline. The currents from all de-
vices connected to the same bitline add up according to the Kirchhoff’s law to produce
the total current on the jth positive and negative bit lines which are then subtracted
from each other to get the net total current as Ij =

∑H−1
i=0 i+i,j −

∑H−1
i=0 i−i,j.

Total net current is then passed to an analog to digital converter (ADC), which will
quantize the current within the user-provided dynamic range [ADC LOW,ADC HIGH]
to an element in the output vector as given in

b′j = round(
127 ∗ clip(Ij, ADC LOW,ADC HIGH)

ADC HIGH − ADC LOW
)

where 0 ≤ j ≤ W − 1and {b’ ∈ ZW| − 127 ≤ b’ ≤ 127}
(2.3)

The output vector received from the crossbar b’ is proportional to the original output
of the matrix-vector multiplication (MVM) operation b and the proportionality constant
is a function of maximum conductance Gmax, reference wordline voltage VREF and the
ADC dynamic range [ADC LOW,ADC HIGH].

2.1 Crossbar performance metrics

In Table 2.1 we present the performance metrics of the crossbar array.

www.wiplash.eu 13 March 30, 2021

WiPLASH D4.2 H2020-FETOPEN-863337

Table 2.1: Performance metrics of the accelerator core
Name Value

Total number of unit cells (2 device/unit cell) HxW
Device programming levels 8
Bit equivalence of unit cell 1-bit sign, 3-bit magnitude
Core area 18.2xHxW µm2

MVM core delay 70 ns
Output bandwidth Wx8/70 bits/s
MVM energy per unit cell 50 fJ
MVM core energy HxWx50 fJ
Core throughput 2xHxW/70 GOp/s
Core energy efficiency (unit cells only) 40 TOP/s/W
Core energy efficieny (including DACs/ADCs) 0.5x40 TOP/s/W

www.wiplash.eu 14 March 30, 2021

WiPLASH D4.2 H2020-FETOPEN-863337

2.2 PCM device dynamics and modeling

[Responsible partner: IBM] In this section the dynamics of Phase-change memory
(PCM) devices that are used to realize the in-memory compute array and the PCM
model that is developed to fit these dynamics is discussed. PCM is arguably the most

+ + +

V1

V2

VH

IWI2I1

G+2,1G-2,1

101 102 103 104 105

Time [s]

10 6

10 5

C
o

n
d

u
ct

a
n

ce
[S

]

Example Curve Fittings

Sample Device 1

Sample Device 2

Sample Device 3

Sample Device 4

(b)

(a)

Figure 2.2: (a) Different ’phases’ of PCM materials. On the right is the PCM device in
low resistance crystalline phase, on the left it is in high resistance amorphous phase
grown like a head of a mushroom. The phase can be shifted between either states
by applying electrical pulses of specific shapes. (b) SET state measurements from 4
example devices, with their fitted curves

advanced memristive technology that has found applications in the space of compu-
tational memory [6], [7], [8]. A PCM device consists of a nanometric volume of a
chalcogenide phase-change alloy sandwiched between two electrodes as shown in
Fig. 2.2(a). The phase-change material is in the crystalline phase in an as-fabricated
device see Fig. 2.2(a)(right). By applying a current pulse of sufficient amplitude (typi-
cally referred to as the RESET pulse) an amorphous region around the narrow bottom
electrode is created via melt-quench process. The resulting “mushroom-type” phase
configuration is schematically shown in Fig. 2.2(a)(left). The device will be in a high
resistance state if the amorphous region blocks the conductance path between the
two electrodes. This amorphous region can be partially crystallized by a SET pulse

www.wiplash.eu 15 March 30, 2021

WiPLASH D4.2 H2020-FETOPEN-863337

that heats the device (via Joule heating) to its crystallization temperature regime [9].
With the successive application of such SET pulses, there is a progressive increase in
the device conductance. This analog storage capability and the accumulative behavior
arising from the crystallization dynamics are central to the hybrid-precision in-memory
MVM acceleration.

In order to model the most important PCM non-idealities, a simple conductance
drift behavior has been assumed:

G(t) = Gt0 ·
(
t

t0

)−ν
(2.4)

where ν is the drift component and G means conductance after t time since program-
ming. Since we fit these parameters to our measurements, we can simply chose
reference time t0 = 1s so that Eq. 2.4 becomes

G(t) = k Gmax · t−ν . (2.5)

We then introduce several parameters to model variations (see Table 2.2). The
variations are assumed to be of Gaussian nature. Our final model of the conductance
of a single PCM device is the following:

G(t) = N (0, G̃2
r) + k (Gmax · N (1, G̃2

p)) · t−ν·N (1,ν̃2), (2.6)

with k ∈ {0, 1/7, 2/7..., 1} is the fraction representing multi-level conductance, N (µ, σ2)
being the normal distribution with mean µ and standard deviation σ and G̃2

r , G̃2
p, ν̃2 rep-

resent the variability in additive read noise, programming noise and drift respectively.
In order to obtain reasonable values for the above parameters, we program several

devices on the PCM prototype chip [10] which includes 3 million PCM devices and fab-
ricated with 90nm technology. The evolution of conductance values on these devices
were then measures at time scales upto five orders of magnitude as shown in Fig. 2.2.
A fit line is generated for each series of device measurements. The model parameters
given in the table 2.2 are then estimated from the sample measurements.

Table 2.2: Estimated values of the model parameters.

Symbol Description Type Value

Gmax mean SET conductance at time
t = 1s

- 38.2× 10−6 S

ν mean drift exponent - 0.0598

G̃p programming variability multiplicative 31.7%

G̃r read-out noise additive 0.496× 10−6 S

ν̃ drift variability multiplicative 9.07%

www.wiplash.eu 16 March 30, 2021

WiPLASH D4.2 H2020-FETOPEN-863337

2.3 Simulation models

Cluster TB

CiM
Engine

C1 CN

M1 MN

P
y

se
rv

er

D
P

I-
C

 c
lie

n
t

L2 memoryApp compile

archi

hal

PULP Cluster

Socket API

Compile-�me resources

Run-�me synthesizable
resources

Run-�me non-synthesizable
resources

L2 bus

Cluster TB

CiM Engine

C1 CN

M1 MN

L2 memoryApp compile

archi

hal

PULP Cluster

L2 bus

PCM crossbar
memory

(a)

(b)

PCM
crossbar
model

PCM
device
model

Figure 2.3: (a) Simulation framework in which PCM devices are more accurately mod-
elled in python (b) Simulation framework in which PCM crossbar is modeled in Sys-
temVerilog to achieve higher simulation speed at the expense of less accurate device
conductance modeling.

We simulate the IMA integrated pulp cluster in two modes. In both modes, we use
pulp tool chain and the runtime to build and run user application which is written in C.

1. In the first mode, the PCM model is in python. In these models we capture all
the device dynamics discussed in section 2.2 using python computing packages
such as numpy. We also include accurate programming and MVM operation
delay information into these models. At the runtime a server is invoked on the
python side and connected to a C-based client using BSD socket API [11]. The
C-based client is then connected to the pulp cluster which is running on Sys-
temVerilog using a direct programming C interface. We use a simple message
passing protocol to send PCM read write and MVM evaluation requests from
the SystemVerilog testbench side and exchange the timestamps to model the
simulation delays.

2. In the second mode, the PCM crossbar is modeled entirely using a non-synthesizable
SystemVerilog class. This reduces the simulation time considerably however at

www.wiplash.eu 17 March 30, 2021

WiPLASH D4.2 H2020-FETOPEN-863337

the expense of less-precise modeling of PCM dynamics. The PCM crossbar
array is modeled as an ideal storage unit. Nevertheless, the delays that are in-
curred during the access of the PCM crossbar memory are properly measured.
This allows us to expand the realm of applications that we can simulation with
IMA integrated pulp cluster to more practical workloads such as MobileNetV2.
(see section 4.4. Further architectural optimizations and parameter tuning were
conducted based on the findings of these simulations.

www.wiplash.eu 18 March 30, 2021

3. Heterogeneous IMA-based Computing Clus-
ter

This chapter describes the integration of the IMA described in Chapter 2 within a tightly
coupled cluster of RISC-V processors. The baseline cluster used within this project is
based on PULP architecture [12] which structure can be seen in Fig. 3.1 on the left
side of the figure. The cluster incorporates 8 RISC-V cores who share a single-cycle
latency, word interleaved data memory called Tightly Coupled Data Memory (TCDM),
or referred to as L1 memory. This memory configuration reduces the number of con-
flicts when multiple accesses are carried out by many sources at the same time (cores
and accelerator). The core’s ISA includes standard RISC-V RV32IMC [13] and a cus-
tom extension called Xpulp [14] that aims to accelerate arithmetic intensive kernels.
This extension gives significant performance boosts when executing inner kernels of
Convolutional Neural Network (CNN) where, hardware loops, packed SIMD dot prod-
ucts, post increment load & store, lands close to 9x performance w.r.t. RV32IMC (Fig 7
in [15]). The cores instructions are fed by a hierarchical instruction cache, where each
core is supplied by a 512B private cache that is connected to a 4KB shared among all
cores. In addition, most compute-heavy workloads can be offloaded to accelerators
(In-Memory accelerator in this case) by accessing the internal control register file via
peripheral interconnect and programming them based on the task structure.

3.1 IMA Subsystem Architecture

The IMA exposes a control and a data interface towards the rest of the cluster based
on a standardized Hardware Processing Engine Hardware Processing Engine (HWPE)
interface 1. The data interface employs a direct connection with TCDM memory, com-
posed of 16 parallel 32-bit banks in this work, through the same interconnect used
by cores. The number of master ports is a design-time parameter Nport that can be
chosen depending on the required bandwidth – as we show in Section 4.2, 4.4.

In Fig. 3.1, we show a detailed view of the IMA subsystem. The accelerator is com-
posed of three main blocks. The controller includes the register file and the internal
FSM coordinating the other blocks. The engine contains both the digital and analog
parts of the IMA datapath. The digital part is composed of buffers for ADCs and DACs
and control circuitry; the analog core encloses all the PCM devices (including PCM pro-
gramming circuitry), as well as the ADCs and DACs themselves. The streamer block
contains the address generators for memory transactions, implements the request pro-
tocols towards the TCDM, realigns data, and takes care of contentions. The address
generators are capable of three-dimensional stridden access. This is extremely use-

1https://hwpe-doc.readthedocs.io/en/latest/

19

WiPLASH D4.2 H2020-FETOPEN-863337

Figure 3.1: Heterogeneous Cluster and In-memory Accelerator subsystem.

ful in fetching the input tensors for CNNs where we have chunks of contiguous data
separated between each other. These chunks have to be made contiguous inside the
engine’s data buffers and multiple stridden memory accesses allows this task to be
completed without overheads. Data coming from Nport 32-bit TCDM ports are merged
into a unique stream of data using a simple ready/valid handshake, which is fed to the
engine. Conversely, data streams coming from the engine towards the TCDM memory
are split in Nport 32-bit TCDM accesses.

The configuration sequence of the IMA starts when a core acquires a lock over the
accelerator by reading a special ACQUIRE register through the peripheral control inter-
face. After that, the core can interact with the IMA by: programming the PCM devices
with the weights of one or multiple layers; reading the conductance value of a PCM
device; programming a job by setting the address of input and output data in TCDM
and the ADC configuration; when the configuration is over the job can be started by
writing to a special TRIGGER register. To minimize IMA configuration and synchroniza-
tion overhead, multiple jobs can be pipelined by setting the register file with the correct
strides. Thus, a whole layer can be executed with only one configuration phase. The
IMA works on input data stored in L1 with the HWC format, i.e., with consecutive data
elements encoding pixels that are adjacents in the channel dimension. The execution
of a job is divided into three phases: STREAMIN: fetch data from the TCDM that is then
streamed to the engine’s internal DACs buffers; COMPUTATION: analog computation on
the crossbar and writing of the ADCs buffers; STREAMOUT: stream data from buffers
back to the TCDM. In Fig. 3.2, we show how a CNN layer is mapped into the IMA and
how the computational timeline is executed. For a standard convolutional layer, the
STREAMIN phase also includes a virtual IM2COL transformation [15] (achieved with
the multiple stridden address generator), which is performed directly by the streamers,
enabling to remap all computation supported by the IMA to matrix-vector products of
the form discussed in Section 2. As a consequence, the PCM array computes Cout
Output Feature Map (OFM) from a complete input volume of Cin ×K ×K pixels in a
single operation, where Cin,out indicate the number of channels and K is the filter size.

www.wiplash.eu 20 March 30, 2021

WiPLASH D4.2 H2020-FETOPEN-863337

PCM XBAR

DAC BUFFERS

ADC
BUFFER

INPUT
FEATURE MAP

OUTPUT
FEATURE MAP

WEIGHTS

Trigger

JOB[0] tAcquire
Comp.Stream-In Stream-OutConfig.

JOB[1] JOB[2] JOB[N-1]

Figure 3.2: IMA mapping of standard convolutions on the PCM crossbar. Below a
timeline of the execution model.

3.2 IMA Internal Registers

The internal registers includes all necessary configuration to allow a CNN layer to be
exectuted in a single configuration phase. In Tab. 3.1 a list of all internal registers are
presented with their function. In the context of the accelerator, a plot is the portion of
the PCM Crossbar that you require to read or write to. In Fig. 3.3 on the left, we can
see a visual representation of the different plot that can be programmed into the array,
in this specific use case, each plot would be the parameters of the layer. To configure
jobs and plots the state machine in Fig. 3.3 (right side) is inside the IMA controller
which manage the data coming in through the peripheral interconnect.

(0,0)
X

Y

Plot 0 Plot 1

Plot 2

P
lo

t
H

ei
gh

t

Plot Width
IDLE

Reset

ACQUIRE

PLOT WRITE
REQUEST

PLOT WRITE

PLOT READ
REQUEST

PLOT READ

JOB REQUEST

JOB EVALUATION

a) b)

Figure 3.3: a): PCM Array subdivided in Plots, b): Controller FSM.

3.3 CNN configuration for IMA

In this section we will show how to configure the IMA accelerator to compute a CNN
layer that has the same structure as the one that will be used for the performance eval-

www.wiplash.eu 21 March 30, 2021

WiPLASH D4.2 H2020-FETOPEN-863337

Table 3.1: List of the programmable registers of the IMA.
Register Name OFFSET Descritpion
IMA TRIGGER 0x00 Trigger the execution of a job (or jobs).
IMA ACQUIRE 0x04 Acquire the accelerator control
IMA FINISHED JOBS 0x08 Return the number of concluded jobs since last read
IMA STATUS 0x0c Return the status of the IMA (1=busy, 0=idle)
IMA RUNNING TASK 0x10 Return ID of the currently running task. -1 if no task is running.
IMA SOFT CLEAR 0x14 Reset internal registers of the IMA (skipping the register file).
IMA CHECK STATE 0x18 Returns state of main FSM (transition diagram shown below). Useful for debugging purposes.
IMA P START X 0x20 Coordinates of X where to start the plot.
IMA P START Y 0x24 Coordinates of Y where to start the plot.
IMA P WIDTH 0x28 Plot width, used to count the number of expected parameters
IMA P HEIGHT 0x2c Plot height, used to count the number of expected parameters
IMA SUBMIT PLOT 0x30 Request to write a Plot to the Crossbar array
IMA J START X 0x34 X coordinate where the plot starts.
IMA J START Y 0x38 Y coordinate where the plot starts.
IMA J WIDTH 0x3c Width of the plot (output length)
IMA J HEIGHT 0x40 Height of the plot (input length)
IMA J SRC ADDR 0x44 Address of the first input tensor element.
IMA J DST ADDR 0x48 Address of the first output tensor element.
IMA J SRC STRID 0x4c Line Stride for the source tensor
IMA J DST STRID 0x50 Line Stride for the ouptut tensor.
IMA ADC LOW 0x54 Low value of the ADC Dynamic Range
IMA ADC HIGH 0x58 High value of the ADC Dynamic Range

IMA FETCH LENGTH 0x5c Number of memory transactions for the input tensor
(depends on width of the input ports, e.g. 4 TCDM ports can fetch 4*4 bytes).

IMA STORE LENGTH 0x60 Number of memory transactions for the output tensor.
IMA JOB LINE LENGTH 0x64 Number of bytes of the input line (Used for leftover).
IMA JOB FEAT STRIDE 0x68 Second stride for the input tensor.
IMA JOB FEAT LENGTH 0x6c Number of times the first stride is used.
IMA NUM JOBS 0x70 Number of pipelined jobs.
IMA ALPHA IN LENGTH 0x74 Number of jobs using the first job stride (input side).
IMA ALPHA IN STRIDE 0x78 First stride for of the job pipelining (input side).
IMA BETA IN LENGTH 0x7c Number of jobs using the second job stride (input side).
IMA BETA IN STRIDE 0x80 Second stride for the job pipelining (input side).
IMA ALPHA OUT LENGTH 0x84 Number of jobs using the first job stride (output side).
IMA ALPHA OUT STRIDE 0x88 First stride for of the job pipelining (output side).
IMA BETA OUT LENGTH 0x8c Number of jobs using the second job stride (output side).
IMA BETA OUT STRIDE 0x90 Second stride for the job pipelining (output side).
IMA JOB LL MEMT 0x94 Number of memory transaction for the input line (used for leftover).
IMA JOB FEAT ROLL 0x98 Number of times the second stride is used.
IMA DW MODE 0x9c Enable Depthwise Mode.
IMA PR ADDR X 0xa0 Coordinates in X of the plot to read.
IMA PR ADDR Y 0xa4 Coordinates in Y of the plot to read.
IMA PR VAL 0xa8 Return requested read data.

www.wiplash.eu 22 March 30, 2021

WiPLASH D4.2 H2020-FETOPEN-863337

uation in Section 4.2. The configuration is mainly splitted in three phases: i) loading
the parameters into the PCM Array; ii) Setup of individual jobs; iii) Setup of job pipelin-
ing. We note that the parameter phase would be done ”offline” and it is feasible during
inference due to high delay for programming the PCM devices.
Submitting a plot: One of the core (core 0 for this example) will lock the accelera-
tor by writing to the ACQUIRE register. At this step, plot submission starts when
one of the plot register is written. Four registers are needed for setting the layer:
IMA P START X, IMA P START Y will set the starting point for the plot (e.g.: in
Fig. 3.3 Plot 0 would start at x=0 and y=0), while IMA P HEIGHT and IMA P WIDTH
depends on the size of the filters (for this example 3×3×32) and the number of output
channel (64) respectively. Once these four register are set, the IMA expect a num-
ber of parameters that is equal to the height × width that has been just set. To write
the parameters a 32-bit wide bus is used, so up to 8 weights can be written per re-
quest. The weights are written along the X axis first and then Y. For this example
(64÷ 8)× (3× 3× 32) writes are required. Once the last parmater is sent to the cross-
bar the configuration phase ends with the IMA going back to IDLE state.
Setting up individual jobs: a job requires to use one of the plot that have been pro-
grammed in the previous phases. The registers IMA J WIDTH and IMA J HEIGHT
are the same as the plot width and height so they must be consistent. It’s also re-
quired to set the dynamic range of the ADC with the register IMA ADC LOW and
IMA ADC HIGH (depends on the layer). Subsequently, we configure the IMA stream-
ers so that they can extract an input tensor from the Input Feature Map (IFM) and
streams it to the internal engine’s buffer (same goes for the output streamer which
takes the data from the ADC buffer and stream it back to memory). In Fig. 3.4 we can
see how the input data is remapped into the IMA internal’s buffers. The channels in
the IFM are stored contiguously in memory (HWC format) as it can be seen by the
relative indexes in the figure. To properly extract those input elements the steamers
needs the strides to be set accordingly. For the input, we start by programming the
line length and the number of memory transaction needed to fetch a complete line
from memory (registers IMA JOB LINE LENGTH and IMA JOB LL MEMT respec-
tively). From the point of view of the accelerator, a line is the amount of contiguous
data in memory and for this examples is 32 × 3 (input channels times filter width).
The IMA JOB LL MEMT is used by the streamer to understand how many memory
requests are needed to bring the input to the internal engine’s buffer and it depends
on the width of the stream (the stream width is a design time parameter that can be
changed and represent how wide the interface to the memory is). In the example
from Section 4.2, each line is 32 × 3 = 96 bytes long. If we were to assume 4 TCDM
ports for the input interface (which are 4 bytes wide each), we would fetch 16 bytes
per memory request meaning 6 will be programmed into IMA JOB LL MEMT. The
IMA JOB LINE LENGTH register is used by the engine to deal with leftovers, this
way, if our interface fetch more data that needed because the line is not a multiple of
the width of the bus, the engine will discard the last bytes that are not used. Once
the line length is set, its stride need to be configured by writing to IMA J SRC STRID
register. The line stride represent the distance between the lines. In the case we are
looking at, the next line is (16− 3)× 32 bytes ahead, where 32 is the number channel
in the IFM and 16 is the width of the image (we subtract 3 because of the size of the
filter). Each input tensor is composed of 3 lines (or FEAT as referred in the name
of the register) that is equal to the height of the filter (which will be programmed into

www.wiplash.eu 23 March 30, 2021

WiPLASH D4.2 H2020-FETOPEN-863337

IMA JOB FEAT LENGTH register). Last register to be configured for the input side is
IMA FETCH LENGTH: this is the total number of memory transaction needed for the
input tensor (still dependent on the number of input ports). It’s value can be found by
multiplying IMA JOB FEAT LENGTH times IMA JOB LL MEMT. We can now pass
to the output streamer, which is easier to configure thanks to data being all contiguous
in memory (see Fig. 3.4). This requires only to IMA STORE LENGTH register that is
set to the number of memory transaction needed to store the data.

Setting multiple jobs: each job we execute will compute all the output channel

0 32 64

512546578

1024 1056 1088

0

32

64

512

546

578

1024

1056

1088

0 63

0

Figure 3.4: CNN remapping in the IMA.

for a given pixel (assuming that the width of the crossbar is wide enough to fit),
meaning that we can compute the whole layer with a number of jobs that is equal to
Output layer width×Output layer height. This value will be set to IMA NUM JOBS
register and is 16×16 = 256 in this example. Then, we need to set the strides of the in-
put and output jobs by programming the alpha and beta registers. The alpha and beta
register can be seen as two nested loop where the alpha is the inner one. On each
job, alpha stride will be used until we reach alpha length, at this point, the beta stride
is used and the beta counter is increased. This will go on until all jobs are completed.
For the input, we have 16 jobs per row and a total of 16 rows meaning the value 16
we’ll be written to both IMA ALPHA IN LENGTH and IMA BETA IN LENGTH. The
alpha stride has to be set depending on the stride of the layer (the actual layer param-
eter) and the number of input channels. Given that the number of channels of the IFM
is 32, the IMA ALPHA IN STRIDE will be set to that (since the layer stride is 1). For
the length we will use the width of the OFM width, which is 16. The beta length will be
the same as input since width and height of the layer are the same. For the strides,
we have to consider what happens at the end of each job. Here we have two cases,
assuming we move from left to right: we are inside the width of the IFM, the next job
moves to the right by 32 bytes (assuming stride 1) - alpha stride; we reach the end of
the width, we need to move down along the height meaning that the next job is 32× 3
bytes later (input channel times kernel width) - beta stride.

Once all these register are set we are ready to evaluate the layer, one of the core
can acquire the accelerator and trigger it. The accelerator will compute the whole

www.wiplash.eu 24 March 30, 2021

WiPLASH D4.2 H2020-FETOPEN-863337

OFM and go back to idle. In Fig. 3.5, a flow chart show the process of configuring and
execution of the layer.

Acquire IMA

IMA_P_START_X
IMA_P_START_Y

IMA_P_WIDTH
IMA_P_HEIGTH

AWAITS FOR
PARAMETERS

LAST PARAMETER?

IDLE

yes

no

Configure Layer
Params

Send Parameters to
SUBMIT_PLOT

register

Acquire IMA

IMA_J_START_X
IMA_J_START_Y

IMA_J_WIDTH
IMA_J_HEIGTH

IMA_J_SRC_ADDR
IMA_J_DST_ADDR

IMA_ADC_LOW
IMA_ADC_HIGH

Configure Job Params

IMA_FETCH_LENGTH
IMA_STORE_LENGTH

IMA_JOB_LINE_LENGTH
IMA_JOB_FEAT_STRIDE

IMA_FEAT_LENGTH

Configure Job Streamer

IMA_ALPHA_IN_LENGTH
IMA_ALPHA_IN_STRIDE

IMA_ALPHA_OUT_LENGTH
IMA_OUT_STRIDE

Configure Job Pipelining

IDLE

Acquire IMA

STREAM IN

Trigger the Job

COMPUTE

STREAM OUT

LAST JOB?

no

yes

IDLE

Programming
XBAR Array

Programming
Current Job Executing Layer

Figure 3.5: CNN flow-chart for programming, and executing a CNN layer.

www.wiplash.eu 25 March 30, 2021

4. Results & MobileNetV2 Case Study

4.1 Experimental Setup

The results shown in the next sections are attained by synthesizing the cluster de-
scribed in previous section using Synopsys Design Compiler to target the Global-
Foundries 22nm FDX technology (SSG corner @ 0.59V and 250 MHz). For power
analysis, we used Synopsys PrimeTime with typical corner with 0.65V at 25°C, with
switching activity back-annotation from post-synthesis simulation. We assume that the
PCM array is properly sized to fit all weights.

In the following Tab. 4.1 we report the implementation results showing the most
notable blocks of the heterogeneous cluster. The first half of the table report the results
in term of area, where we separated the analog (that is constant since we used a
256x256 PCM array for all the tests) and digital part. As expected, the increase of
the memory interface bloats both the cluster interconnect and IMA subsystem while
the rest remain constant. This effect can also be seen in the second half of the table
where we report the power consumption while executing a CNN layer on the IMA. The
power consumption does not only rise in the interconnect and IMA subsystem but also
on the L1, where a bigger interface puts a heavier pressure on the memory subsystem.
In Section 4.3 we’ll see the effects of these results on the overall performance metrics
we chose. From here on we assume the cluster frequency of 250MHz and using the
convention 1 MAC = 2 OPs.

4.2 Baseline IMA performance

To assess the IMA’s performance in a realistic baseline case, we used a standard con-
volutional layer with 3x3 filter, with 16x16 output size, 32 input channels, and 64 output
channels (∼4.7 MMAC). The IMA went through several iterations where we optimized

Table 4.1: Implementation Results
AREA RESULTS [µm2]

CONFIGURATIONS TOT AREA WITH IMA TOT AREA CORES AREA IMA SUBSYSTEM CLUSTER INTERCO L1 TCDM REST
IMA - 1/1 1,612,701 422,701 11,439 29,530 10,481 118,971 252,280
IMA - 2/2 1,621,609 431,609 11,442 37,650 11,274 118,971 252,272
IMA - 4/4 1,637,745 447,745 11,439 52,217 12,837 118,971 252,281
IMA - 8/8 1,672,777 482,777 11,442 84,063 16,003 118,971 252,298
IMA 16/16 1,739,356 549,356 11,442 144,194 22,431 118,971 252,318

PCM 256x256 1.19 [mm2]
POWER RESULTS [mW]

Power Figures TOT POWER CORE POWER HWPE SUBSYSTEM CLUSTER INTERCO L1 BANKS REST
IMA - 1/1 3.84 0.35 0.66 0.08 0.74 2.00
IMA - 2/2 3.97 0.35 0.72 0.09 0.81 2.00
IMA - 4/4 4.07 0.35 0.76 0.10 0.85 2.01
IMA - 8/8 4.82 0.35 1.08 0.14 1.23 2.02
IMA 16/16 6.25 0.35 1.61 0.24 2.01 2.03

26

WiPLASH D4.2 H2020-FETOPEN-863337

0

10000

20000

30000

40000

50000

1/1
1/1 P

1/1 PS

2/2
2/2 P

2/2 PS

4/4
4/4 P

4/4 PS

8/8
8/8 P

8/8 PS

16/16

16/16 P

16/16 PS

P
ER

FO
R

M
A

N
C

E
(#

C
YC

LE
S)

STREAM-OUT

SETUP

COMPUTATION

STREAM-IN

CONFIG. OH

IM2COL

Figure 4.1: Performance between different IMA iterations on CNN layer.

1

10

100

CORES 1/1 2/2 4/4 8/8 16/16

G
O
P
S

10.2x 16.7x 24.7x 32.5x 36.7x

1x

Figure 4.2: Performance on standard convolution: Software execution (SW) vs IMA
acceleration (frequency = 250MHz). The N/N configuration indicates the number of
load and store master ports.

configurations and data marshalling overheads. The first implementation used the 8
cluster cores as mean of data marshalling (creation of IM2COL [15]), this meant that
the streamers would fetch data from a contiguous buffer and not leveraging the multiple
stridden memory accesses. This implementation also suffered from heavy overheads
due to configuration which was necessary between each job (no job pipelining). In
figure 4.1 we can see the three implementation pitted against each other while varying
the number of TCDM ports (e.g.: 1/1 means one port for input and one for output,
each port is 32-bit wide) on the aforementioned layer. The job pipelining optimization
is referred as P while PS drops the core for data marshalling and uses the multiple
strides of the streamers.

Outside the Job’s phases (stream-in, compute, stream-out) the IM2COL and the
configuration overhead posed a significant burden on performance, which is the rea-
son of their optimization. The SETUP, includes all overheads coming from FIFOs,

www.wiplash.eu 27 March 30, 2021

WiPLASH D4.2 H2020-FETOPEN-863337

Input

Conv 1x1, Relu6

Dwise, Relu6
Stride 1

Conv 1x1, Linear

Add

INPUT
BUFFER

Different Channels from the same input Pixel

PCM MATRIX

OUTPUT
BUFFER

OUTPUT
BUFFER

Different Input across different channelsINPUT
BUFFER

PCM MATRIX

Layer Size IN-CH OUT-CH

Conv 1x1 28x28 32 192

Dwise 28x28 192 192

Conv 1x1 28x28 192 32

Figure 4.3: Components of MobilenetV2 bottleneck block with stride = 1 and mapping
structure in the PCM crossbar for depthwise and 1x1 layers. For depthwise, all the
gray rectangles are padding required for computing more than 1 channel per job.

realignment of data, and address updates between jobs. In this particular case, the
streaming of the input tensor was one of the main contributor that has been addressed
by the increase in bandwidth. Fig. 4.2 shows the last IMA implementation compared
with a pure software execution of the layer on the 8 cores using PULP-NN [15]. The
speed-up ranges from 10.2x on 1/1 configuration up to 36.7x when 16/16 is used.

4.3 Case Study: MobilenetV2

To highlight the advantages and trade-offs of IMC on a realistic use case for extreme
edge computing, we selected MobileNetV2, a widely used DNNDNN benchmark con-
structed as a deep stack of units called BottleNecks. For this analysis, we focus on the
BottleNeck configuration that is shown in Fig. 4.3; the configuration is chosen so to fit
the on-cluster TCDM (512 kB) without requiring any activation data tiling [16], where
we note that this will further decrease energy efficiency and performance.

All layers in the BottleNeck can be mapped on the IMA. For the 1x1 convolutional
layers, the mapping is direct as shown in Fig. 3.2 and Fig. 4.3, exploiting their high-
level of channel parallelism. However, in the 3x3 depthwise layer each output channel
depends only on a single input channel. This fact means that optimizing at the same
time the array utilization and the execution performance is not possible.

A K × K depthwise layer with C in/out channels can be mapped as a standard
layer with all weights out of a diagonal set to 0, as shown in Fig. 4.3. This means that
out of K2 × C2 crossbar locations, only K2 × C are useful, leading to low utilization
of the array. On the other hand, the depthwise can be split in separate jobs to reduce
the array utilization, but this leads to a smaller amount of operations per job, reducing

www.wiplash.eu 28 March 30, 2021

WiPLASH D4.2 H2020-FETOPEN-863337

A B

C

Figure 4.4: Show the different depthwise mapping: A) Shows 4 channel per job map-
ping; B) Shows multiple pixel per job mapping; C) Mix multiple channel per job with the
mapping in B).

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10

N
u

m
b

er
o

f
W

ei
gh

ts

Channels per Computa�on ACTUAL MEMORY
MIN MEMORY

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10

N
u

m
b

er
 o

f
W

ei
gh

ts

Pixels Per Channel
ACTUAL MEMORY

MIN MEMORY

Figure 4.5: Mapping for depthwise on IMA. On the left: Number of Parameters vs
Number of Channels per job. On the Right: Number of Parameters vs Number of
pixels per job.

performance. The total number of crossbar elements required is in general given by
Nxbar = K2×C ×Cjob, where Cjob is the number of channels per job. For a MobileNet-
V2, full throughput for all Bottlenecks would require a 23× larger array than what simply
counting the number of parameters would suggest. This result stands even if the
number of depthwise parameters is just ∼4% of the total number of weights.

Here, we considered Cjob = 8 and 16 as reasonable trade-off configurations, which
translates to an increase of 25% and 54% in the number of devices respectively. These
are indicated as IMA8 and IMA16, respectively, in the following sections. We also
explored a different mapping for depthwise layers as can be see in Fig. 4.4. In A)
the mapping described above is shown, in this case there are 4 channel per job and
different group of filters are put one next to each other. On B) we show a different
way of mapping depthwise: we act on multiple pixels from the same channel instead
of same pixel across channels. This representation could seem more densely packed
than A) but we have to factor that it is computing only one channel per job. This means
that we are storing the same filter of the same channel multiple times leading to a much
lower PCM array utilization than A). In C) we show the results of mixing the solution B)
with A) where we compute 4 different channels at the same time.

www.wiplash.eu 29 March 30, 2021

WiPLASH D4.2 H2020-FETOPEN-863337

0%

5%

10%

15%

20%

25%

0
2
4
6
8

10
12
14
16
18
20
22

17
28
0

51
84
0

86
40
0

12
09
60

15
55
20

19
00
80

22
46
40

25
92
00 MAC/CYCLE

U�liza�on

Digital Convolu�onal
Accelerator

SW on
8 cores

IMA 8

IMA 16

Number Of Parameters

M
A

C
/C

YC
LE

Figure 4.6: Thorough-put of the IMA on Depthwise layer vs. Amount of Parameters
for a layer with 384 channels and 14x14 size. The orange line represent the utilization
of the Array that is calculated by number of weights ÷ total size were the total size
includes the padding.

To better show the implication of these two approach the graphs from Fig. 4.5
represents the number of weights used while increasing the channels per job (if we
refer to mapping A - left side) or pixels per job (referring to mapping B - right side).
The utilization of the crossbar is low in both cases but is even worse in mapping B.
This can be seen by looking at the min memory line, which represent the amount of
memory needed to compute the pixels/channels (i.e.: for multiple pixels of the same
channel one filter is needed, if we take 3 × 3 kernel as example this would mean 9
weights. In case of multiple channels the amount of min memory necessary would be
3 × 3 × num channel). The rest of the work will consider the mapping of depthwise
on the IMA as mapping A). On this we made a model that estimates the performance
that could be expected on the IMA varying the number of channels per job and is
shown in Fig. 4.6 (on the X axis the number of parameters is shown, which is directly
related to channels per job) where we considered a TCDM interface 64 bytes wide.
We can see performance scales quite linearly while the percentage of utilization drops
significantly from the beginning (where it starts with 5 channels per job). The drops in
performance going to the right is caused by the increase of data for the stream-in/out
phase. If the size of the TCDM interface was smaller, the ”dent” would move to the left
so this represent a best case scenario when we max out the memory bandwidth to the
accelerator. Given the massive increase in number of parameter for IMA 16 and IMA
8 going up the curve would only exacerbate this effect.

An alternative solution supported by the heterogeneous cluster we propose is the
parallel execution of the depthwise layer via software [15] on the 8 RISC-V cores of
the cluster, intermixed with IMA-based execution of 1x1 layers. This configuration,
which is reported as HYBRID, requires the parameters from the depthwise layer to be
stored in memory instead of IMA which we consider a reasonable trade-off since those
parameters account only for 4% of the total weights.

www.wiplash.eu 30 March 30, 2021

WiPLASH D4.2 H2020-FETOPEN-863337

4.4 MobileNetV2 Bottlenecks Results

The performance results in this section are from the Bottleneck with sizes reported in
Fig. 4.3 sweeping across 1 to 16 ports for stream-in and out. In Fig. 4.7 we can see
how the benefits of adding TCDM master ports start to fall off after 4/4: the depthwise
layer dominates the number of cycles (see Fig. 4.10) and increasing ports doesn’t
render as sizeable an effect as shown in Fig. 4.2. In particular, for the HYBRID solution,
increasing bandwidth toward IMA with more ports does not influence the depthwise
execution. In IMA16 configuration the bandwidth for depthwise saturates when all the
channels can be fetched in one cycle: 4 TCDM ports of 4 bytes each are enough;
going over only benefits 1x1 convolutions. The same reasoning can be applied to 8
channels per job, where 2 ports are sufficient.

0

2

4

6

8

10

12

14

16 8 4 2 1

G
O

P
S

CONFIGURATIONS
HYBRID IMA ONLY (16) IMA ONLY (8) CORES

-4%

Figure 4.7: Performance results measured in GOPS. The arrow indicates the perfor-
mance difference with the most efficient implementation.

Thus, the importance of the depthwise layer in the Bottleneck drives the total im-
provement when using the IMA down to ∼3x the software implementation (down from
∼36x on standard convolutions). Overall, the HYBRID configuration stands out as the
fastest: this is because even in the IMA16 configuration, the depthwise layer is slower
than in software, as can be seen in Fig. 4.10. Similar considerations can be made with
respect to energy efficiency, noticing that adding more ports than necessary reduces
energy efficiency (Fig. 4.8) with respect to the peak at 4 (HYBRID/IMA16) or 2 ports
(IMA8), as it puts more pressure on the memory system.

To put in perspective the cost of increasing the throughput using IMA, the area
efficiency reported in Fig 4.9 is relative to the effective area of the PCM arrays utilized
to implement the Bottleneck (including padding). The HYBRID solution has the best
result requiring ∼3.25x and 2.13x smaller PCM area for the same bottleneck when
compared to IMA16 and IMA8, respectively. Considering also the area of the cluster
itself, we obtain 1.82x and 2.56x better GOPS/mm2, respectively.

Last graph in fig 4.10 we show the average number of cycles per operation it takes
to complete the bottleneck with 4 TCDM port configurations at 250 MHz. The com-
ponents are split into sections as shown in Fig. 4.3. Dominating the computation time
when using the IMA is depthwise, increasing the number of output channels reduces

www.wiplash.eu 31 March 30, 2021

WiPLASH D4.2 H2020-FETOPEN-863337

0.0

0.5

1.0

1.5

2.0

2.5

16 8 4 2 1

TO
P

S/
W

CONFIGURATIONS

HYBRID IMA ONLY (16) IMA ONLY (8) CORES

Figure 4.8: Performance results measured in TOPS. The circle highlights the top per-
forming configuration.

0

5

10

15

20

16 8 4 2 1

G
O

P
S/

m
m

2

CONFIGURATIONS
HYBRID IMA ONLY (16) IMA ONLY (8) CORES

Figure 4.9: Performance results measured in GOPS/mm2. The circle highlights the
top performing configuration.

the number of jobs required, and it scales quite linearly given the fact that the output
of the PCM crossbar requires a fixed time to evaluate the output. When looking at
the convolutions 1x1, the amount of speed-up achieved is comparable with the Fig 4.2
when using the software version as reference. This graph shows that significant per-
formance improvements can still be achieved if specialized digital accelerators tuned
to perform key kernels such as depthwise layers are instantiated in the system.

www.wiplash.eu 32 March 30, 2021

WiPLASH D4.2 H2020-FETOPEN-863337

Figure 4.10: Impact on performance of the various Bottleneck phases (hwc to chw only
needed on SW variants for depthwise). Results are taken using 4/4 port configurations
at 250 MHz.

www.wiplash.eu 33 March 30, 2021

5. Conclusion

In this deliverable we described an In-Memory Accelerator (IMA) and its integration
into a cluster of 8 RISC-V cores. As expected, the IMA boosts performance in matrix-
vector multiplication based kernels such as convolutional layers of neural networks by a
significant factor (up to 36x when compared to an 8-cores cluster in our experiments).
We also show that the inflexible Matrix-Vector product paradigm imposed by IMAs
requires some mitigation on the architectural side. This observation strongly motivates
our choice to couple a highly efficient IMA with a highly flexible cluster of cores. In
fact, even a relatively simple Bottleneck layer from a MobileNetV2 includes blocks
that are not well-mapped to the IMA, specifically, depthwise separable convolutions.
We show several possible mappings trading off area and performance, demonstrating
that executing depthwise layers directly in the cores yields up to 2.56x better area
efficiency without overhead in performance and energy. The heterogeneous system
achieves 13.2 GOPS, 19.7 GOPS/mm2 and 2.55 TOPS/W on a 4/4 configuration that
is competitive with declared metrics from state-of-the-art academic [5] and commercial
systems [3]. We argue that enhanced architectural heterogeneity is the key to fully
exploit the potential of IMC architectures by offsetting their current limitations. Our
future work includes further extending heterogeneous clusters with digital accelerators
tuned to key kernels that are not well suited to IMC, such as depthwise layers, nearing
the 100 TOPS/W targets in real-world DNN inference, as well as exploring system-level
aspects such as cluster to cluster communication exploiting THz wireless transceivers
developed in WiPlash.

34

Bibliography

[1] A. Sebastian et al., “Memory devices and applications for in-memory computing,” Nature nanotech-
nology, vol. 15, no. 7, pp. 529–544, 2020.

[2] N. Verma et al., “In-memory computing: Advances and prospects,” IEEE Solid-State Circuits Mag-
azine, vol. 11, no. 3, pp. 43–55, 2019.

[3] D. Fick and M. Henry, “Analog computation in flash memory for datacenter-scale ai inference in a
small chip,” in Hot Chips, 2018.

[4] S. R. Nandakumar et al., “Mixed-precision deep learning based on computational memory,” Fron-
tiers in Neuroscience, vol. 14, p. 406, 2020.

[5] H. Jia et al., “A programmable heterogeneous microprocessor based on bit-scalable in-memory
computing,” IEEE Journal of Solid-State Circuits, vol. 55, no. 9, pp. 2609–2621, 2020.

[6] M. Cassinerio, N. Ciocchini, and D. Ielmini, “Logic computation in phase change materials by
threshold and memory switching,” Advanced Materials, vol. 25, no. 41, pp. 5975–5980, 2013.

[7] A. Sebastian, T. Tuma, N. Papandreou, M. Le Gallo, L. Kull, T. Parnell, and E. Eleftheriou, “Tem-
poral correlation detection using computational phase-change memory,” Nature Communications,
vol. 8, no. 1, pp. 1–10, 2017.

[8] M. Le Gallo, A. Sebastian, G. Cherubini, H. Giefers, and E. Eleftheriou, “Compressed sensing
with approximate message passing using in-memory computing,” IEEE Transactions on Electron
Devices, vol. 65, no. 10, pp. 4304–4312, 2018.

[9] A. Sebastian, M. Le Gallo, and D. Krebs, “Crystal growth within a phase change memory cell,”
Nature communications, vol. 5, no. 1, pp. 1–9, 2014.

[10] G. Close, U. Frey, M. Breitwisch, H. Lung, C. Lam, C. Hagleitner, and E. Eleftheriou, “Device,
circuit and system-level analysis of noise in multi-bit phase-change memory,” in 2010 International
Electron Devices Meeting, pp. 29–5, IEEE, 2010.

[11] J. Frost, Bsd sockets: A quick and dirty primer. Jim Frost., 1990.

[12] A. Pullini et al., “Mr. Wolf: An energy-precision scalable parallel ultra low power SoC for IoT edge
processing,” IEEE Journal of Solid-State Circuits, vol. 54, no. 7, pp. 1970–1981, 2019.

[13] A. Waterman et al., “The risc-v instruction set manual. volume 1: User-level isa, version 2.0,” tech.
rep., California Univ Berkeley Dept of Electrical Engineering and Computer Sciences, 2014.

[14] M. Gautschi et al., “Near-threshold RISC-V core with DSP extensions for scalable IoT endpoint
devices,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 10,
pp. 2700–2713, 2017.

[15] A. Garofalo et al., “Pulp-NN: accelerating quantized neural networks on parallel ultra-low-power
risc-v processors,” Philosophical Transactions of the Royal Society A, vol. 378, no. 2164,
p. 20190155, 2020.

[16] A. Burrello et al., “DORY: Automatic End-to-End Deployment of Real-World DNNs on Low-Cost
IoT MCUs,” arXiv preprint arXiv:2008.07127, 2020.

35

	Introduction
	In-memory accelerator crossbar
	Crossbar performance metrics
	PCM device dynamics and modeling
	Simulation models

	Heterogeneous IMA-based Computing Cluster
	IMA Subsystem Architecture
	IMA Internal Registers
	CNN configuration for IMA

	Results & MobileNetV2 Case Study
	Experimental Setup
	Baseline IMA performance
	Case Study: MobilenetV2
	MobileNetV2 Bottlenecks Results

	Conclusion

