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Executive Summary 

The main subject of D4.1 is to identify applications workloads to be used in the project 
as case studies. The workloads (i.e.) relevant kernels extracted from the identified 
applications will be used within the project for the following purposes: (1) as a baseline 
on “traditional” state-of-the-art architectures, to highlight bottlenecks, and (2) to 
evaluate the effect of the proposed THz wireless channels. The presented applications 
are relevant for a wide variety of real-world domains belonging but not limited to 
artificial intelligence applications, identified as main driver for the WiPLASH project, 
and they were selected both for their relevance and for their suitability to be accelerated 
by THz wireless channels. The deliverable discusses the bandwidth requirement of the 
selected applications and either estimates their rough potential of acceleration or points 
out to methods to evaluate such potential. The deliverable will also introduce the 
hardware architectures that will be evaluated in the project, belonging to three different 
domains: specialized in-memory computing based hardware accelerators, massively 
parallel multi-core scalable platforms, and more traditional HPC systems. This 
deliverable is related to task T4.1: “Heterogeneous System On Chip”. 
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HPC High-Performance Computing 

DLRM Deep Learning Recommendation Model 

FC Fully Connected 

CTR Click Through Rate 

BFP Banach Fixed Point  

ReLU Rectified Linear Unit 

FL Federated Learning 

GNN Graph Neural Network 

RNN Recurrent Neural Network 

PE Processing Element 

KPI Key Performance Indicator 

DNA Deoxyribo Nucleic Acid 

NGS Next-generation sequencing  

BWT Burrows-Wheeler Transform  
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1 Introduction 

Recent years have seen the emergence of heterogeneous architectures integrating 
multiple general-purpose, specialized computing units, and memories. This 
diversification trend comes together with the extreme parallelism, with energy being 
the main driver for such architectures, an objective that cannot be met anymore with 
the traditional scaling-driven optimization cycles that have maintained Moore’s Law 
trend for decades. The diminishing returns of transistor scaling, the severe scalability 
issues of conventional memory–interconnect architectures of heterogeneous 
massively parallel processors, and the cost of manufacturing large chips are causes 
of this paradigm shift. 

Hardware specialization opens a huge range of possibilities from the architecture 
perspective, but also urgently calls for key enablers at the integration and 
interconnection stages. The use of System-in-Package (SiP) and chiplet systems 
based on 2.5D stacking on silicon interposer, in embedded and high-performance 
environments, are the most common alternatives, often employing carefully designed 
variants of a wired Network-on-Chip (NoC) to transport data between the different 
components. However, as we move off-chip, pin constraints limit the bandwidth and 
flexibility of the available communication schemes, narrowing down the applicability 
and hindering the scalability of heterogeneous systems. In this context, exploiting the 
wireless plasticity pioneered by the WiPLASH project, thanks to the implementation of 
wireless communication at the functional unit level, is expected to lead to a radical step 
further in computing by designing a new breed of massive heterogeneous architectures 
at extreme scales.  

This deliverable aims at providing an overview of the application workloads identified 
by the consortium during the first six month of project, and mapping these applications 
to the three different domains envisioned. The deliverable will first provide an initial 
specification of the architectures targeted by the WiPLASH project, in the three 
different domains: 1) in-memory computing based architectures, 2) massively parallel 
heterogeneous programmable systems 3) HPC systems. Furthermore, it will describe 
the identified applications, their relevance for the scientific and industrial community, 
and their suitability to be accelerated by the architectures developed in WiPLASH. We 
also outline the bandwidth requirements of these applications and the potential 
acceleration offered by the sheer increase of bandwidth offered by addition of the 
wireless links. 

The reminder of the document is organized as follows. Section 2 will provide an 
introduction to the WiPLASH architectures, Section 3 will describe the proposed 
applications and their workloads relevant to the WiPLASH architectures, Section 4 will 
provide some final remarks. 
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2 Target Architectures 

This section provides a brief introduction of the architectures explored within 
WiPLASH, with the goal of understanding the suitability of the domain of applications 
to architectures targeted. 

2.1 In Memory Accelerators-Centric Architectures 

In-memory computing is an emerging computing paradigm that could enable the 
execution of various applications, such as deep learning inference, at extremely high 
energy efficiency and throughput. Among the others, one interesting approach based 
on in-memory computing is based on memory arrays computing fundamental 
operations such as dot products in the analog domain with extremely high energy 
efficiency. The fundamental unit of in-memory computing is a set of memory devices 
organized in a crossbar array, as depicted in Figure 1. A matrix-vector multiplication 
can be executed in constant time by storing the matrix elements as conductances of 
the memory devices and applying the vector values as voltage levels on the word lines. 
Owing to Ohm’s law and Kirchhoff’s current laws, the result of the matrix-vector 
multiplication is obtained as currents on the bit lines. Note that both conventional 
charge-based memory devices and emerging resistive-based devices are good 
candidates for in-memory computing. 

 

Figure 1. In-memory computing unit. 

A computational memory core can be defined as a unit composed of the memory 
crossbar array, the digital processor, and input and output memories. A multitude of 
such interconnected cores composes the in-memory computing-based architecture. 
During execution, the output of a computational memory core is passed as an input to 
another computational memory core, as shown in Figure 2. Hence, the data is 
transferred from one core to the next in a pipelined fashion. In the execution of a 
dataflow on the in-memory computing-based architecture, the communication fabric is 
of significant importance, allowing the pipeline to run unstaggered and ensuring 
maximum throughput. The in-memory computing-based architecture can leverage on 
the constant time complexity of the matrix-vector multiplication to execute with 
unprecedented performance deep learning tasks such as image classification and 
natural language processing. 
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Figure 2. In-memory computing-based architecture composed of computational memory 
cores. 

For a sample application of deep learning inference (see Section 3.1.1 for further 
details), the in-memory computing-based architecture results in the design parameters 
shown in Table 1. 

 

Metric Value 

Number of cores  34 

Data rate (per core)  5 Gbps 

Size of core  576x576  

Energy consumption per core  133 nJ 

Degree of connectivity  Max. 3 channels (3 interconnected cores) 

Reconfigurability  Desired 

Table 1. Design parameters for the application of deep learning inference on in-memory 
computing-based architecture. ResNet-32 network for the task of CIFAR-10 image 

classification is taken as a reference. The crossbar array is assumed to be composed of 
phase-change memory, fabricated in 90 nm technology node. 

2.2 Low-power computing platforms for massively parallel 
processing 

In order to improve the programmability of computing platform with respect to 
accelerator-centric in-memory computing matrixes, in WiPLASH we leverage the 
architectural template of the open-source PULP platform. PULP (Parallel processing 
Ultra Low Power platform) is a design-configurable, scalable clustered many-core 
computing platform, written in synthesizable System Verilog, that allows to define at 
design-time its configuration with as many computing clusters as the applications 
require. Hence the same architectural template can be used both in the context of low-
end applications and as general-purpose accelerator for high performance computing 
systems.  
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Figure 3. PULP SoC Architecture. 

PULP SoCs [1] are built around an advanced MCU controlled by a 32-bit RISC-V 
processor and a full set of peripherals typical of low-power microcontrollers, as shown 
in Figure 3. It includes all the peripherals typical of low-power microcontrollers such as 
QSPI, I2C, I2S, parallel camera interface and UART. While in the current instance of 
PULP platform on-chip memory is extended via an up to 32 Mbytes DDR HyperBus 
interface (800 Mb/s), which is the peripheral providing highest performance with wired 
communication, for the low-end performance embodiment (MCU like). Data transfers 
from/to the peripherals are managed by a multi-channel I/O DMA (μDMA) to minimize 
the amount of interactions and the workload of the controlling core when performing 
IO. In the high-end embodiments of the platform, the peripheral subsystem can be 
replaced by models of high-performance memory controllers (e.g. DDR4). WiPLASH 
will explore mode advanced IO interfaces based on THz wireless channels. 

When the computational requirements of applications cannot be satisfied by the 
controlling processor. The cluster, residing on a dedicated voltage and frequency 
domain, can be turned on and adjusted to the right voltage and frequency. It contains 
a parametric number of RISC-V cores supporting the RVC32IM instruction set [2], plus 
extensions targeting energy-efficient digital signal processing such as hardware loops, 
load/store with pre/post increment, multiply and accumulate (MAC) vector instructions 
(RVC32IMFX) [3]. A parametric number of floating-point units (FPU) can also be 
shared among the processors of the cluster, implementing common floating point 
operations including FMAC, a key operation for near sensor tasks such as filtering and 
neural networks. A multi-ported and multi-banked tightly coupled data memory is 
accessible in just one cycle by all processors and hardware assistance for 
synchronization are also provided. 

A DMA engine optimized for multi-core clusters ensure that data can be moved in and 
out the cluster with the necessary efficiency, although DMA configuration is the direct 
responsibility of the programmer (i.e. the data memory is not a cache). Dedicated 
shared memory hardware processing elements (HWPE) can be added to the cluster 
to improve performance and energy efficiency whenever application requirements 
cannot be satisfied by purely parallel software computation [4]. One possible 
customization of the PULP clusters in WiPLASH leads to the exploitation of PULP 
clusters has heterogeneous, wireless THz channels augmented, in-memory computing 
engines coupling programmable processors with the accelerators described in 
previous section, as depicted in Figure 4. 
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Figure 4. Possible Embodiment of PULP SoC augmented with Wireless THz Channels and 
In-Memory computing cores. 

2.3 HPC Architectures 

HPC architectures are comprising one or several clusters of high-performance multi-
core systems, either RISC-V or ARM, connected to in-memory accelerators. Such 
complex and heterogeneous system cannot be emulated PULP VirtualPlatform, but 
can be simulated with gem5-X [5], running a full Linux OS distribution (as a result of 
the work performed in WP5). 

Gem5-X is an extended version developed in EPFL of the gem5 architectural 
simulator. Simulation with gem5-X can consider in-order cores, out-of-order cores or 
any combination of both (it can support up to 64 in-order cores in a single simulation). 
Architectural extensions can be introduced and their effects assessed on real 
applications running. For example, gem5-X supports High Bandwidth Memories (HBM) 
and in-cache computing or enables the introduction of new instructions. Such a 
simulation model is validated and fine-tuned against characterizations against RISC-
V, ARM and x86 server platforms. Gem5-X simulations calibrated for a ARMv8 A53 in-
order core found on the ARM Juno development board, and running an Ubuntu 18.04 
LTS software environment demonstrates less than 4% timing inaccuracy on profiling 
tests compared to physical hardware. 

HPC architectures exhibit higher thermal dissipation than low power architectures, 
thereby coupling with thermal simulations can be required to ensure the correct 
functionality of the proposed architecture. Power traces can be extracted from the 
gem5-X simulator and fed into the thermal simulator 3D-ICE [6] to determine 
associated thermal dissipation. 3D-ICE simulations are compared against real 
measurements and show off less than 7% error. 

Considering the previously introduced architectures and simulation platform, wireless 
interconnect and protocols can be implemented between clusters, cores, or between 
clusters/cores and accelerators. Such a simulation framework enables to determine, 
for a given application and a set of constraints, the most optimized architecture for a 
power/performance/thermal target. 
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3 Applications 

This section provides an overview of the applications proposed in WiPLASH, starting 
from more traditional convolutional neural networks inference and training, to emerging 
deep learning applications such as DLRM systems and other applications relevant to 
the scientific and industrial communities not belonging to AI. 

The applications are summarized in Table 2, which provides also some of the KPI 
ranges expected for the applications and the mapping of the applications on the target 
architectures. The table also distinguishes between applications that will be evaluated 
in specialized hardware-based architectures and deeply embedded platforms, from 
those that would be evaluated in high-performance systems with a more complex 
architecture. The distinction is necessary because the effort required to implement and 
optimize applications on specialized hardware-based and deeply embedded platforms, 
such as array-based architectures and deeply embedded multi-core systems with 
explicitly managed memory hierarchy, is much higher than the effort required for high-
performance systems with flat memory hierarchy and operating systems [7].  

For the reasons above, the studies related to hardware-based and deeply embedded 
architectures is expected to be restricted to the well-known application domains of 
inference and training of embedded deep neural networks such as MobileNets. These 
applications have relatively small memory footprints (up to 8MB for inference and up 
to 64 MB for training), still available in DRAM memories for deeply embedded 
applications such as Cypress HyperRAM [8], and APMEM [9]. These applications are 
still expected to take advantage of the high bandwidth (orders of magnitude larger than 
SoA devices), low-latency and reconfiguration capabilities of THz wireless channels 
due to the extremely limited on-chip memory available in deeply embedded devices 
(typically up to 1MB for embedded AI processors) [10].  

The peak efficiency expected for these systems is in the range of TOPS/W, thanks to 
the exploitation of embedded in-memory computing based accelerators. Inference 
problems more suitable to be accelerated by this kind of units. On the other hand, 
training problems also require both inference and backward passes, also requiring 
floating-point (high-precision) computations degrading on average the overall energy 
efficiency of the application. The other emerging applications are more suitable for 
high-performance computing architectures, featuring larger memory footprints and a 
peak efficiency expected to be in the range of hundreds of GOPS. 

In order to evaluate the potential benefits of augmenting the described platforms with 
THz wireless communication capabilities, we have computed the bandwidth 
requirements for the different applications. Bandwidth requirements have to be 
intended as the bandwidth needed each application in order to be 100% compute 
bound (in other words, 0% communication bound). The bandwidth is provided as a 
range as for the application performance: the larger is the performance expected for 
each application (GOPS), the larger the bandwidth necessary to sustain this 
performance will be. However, aligned with the considerations above, we again note 
that the bandwidth improvements would lead to predictable performance gains ONLY 
in the case of specialized architectures. On the other hand, in complex HPC 
architectures, increasing the interconnect bandwidth does not necessarily directly 
correlate with predictable speedups due to the effect of the memory hierarchy or the 
operating system. In that case, estimating the gains of the wireless technology will 
require full system simulations. 
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Embedded DNN 
Inference 

IBM 1-8 15-750 1-50 10-3K 500-5K  ✔ ✔ 

Embedded DNN 
Training 

UNIBO 8-64 
240-
12K 

1-50 10-3K 100-1K  ✔ ✔ 

DLRM EPFL 1K-20K 8K-1M 100K 100K-400K 250-1K ✔   

Federated Learning EPFL 1-100 4K-40K 1-500 1K-10K 100-1K ✔   

Next-generation 
sequencing 

EPFL 1K-4K 
15K-
150K 

10K-50K 50K-200K 200-250 ✔   

Real-time video 
surveillance 

EPFL 10-4K 
50K-
150K 

10-50 5K-10K 1-5 ✔ ✔  

Graph Neural 
Networks 

UPC 10-10K 1K-1M 50-8K 2K-300K 100-700 ✔ ✔  

Table 2. WiPLASH Applications summary and main features. 

 

3.1 Embedded CNN Inference 

Lately, Artificial Neural Networks (ANNs) have been extensively used in regular data 
domains. Specifically, Convolutional Neural Networks (CNNs or ConvNets) have been 
exploited for images, video, sound recordings, etc., which has consequently allowed 
us to perform relevant tasks over them such as image classification [19], object 
detection [20] and pose estimation [21] among others. Most ConvNets are built from 
the same basic building blocks: convolution layers, activation layers, and pooling 
layers. One sequence of convolution, activation, and pooling is considered a stage, 
and modern deep networks often consist of multiple stages. 

In-memory computing-based architectures can leverage on the constant time 
complexity of the matrix-vector multiplication to execute with unprecedented 
performance convolutional layers of deep learning tasks. In the in-memory computing-
based architecture, the dataflow occurs as such: the layers of the CNN are each 
mapped to the cores. The execution occurs in a pipelined fashion across the dot 
products: the core assigned to the l-th layer holds in its input memory the activations 
calculated and transmitted by the core assigned to the (l-1)-th layer. When enough 
input activations are present in its input memory, one core calculates one dot product, 
resulting in the output activations from a pixel position across all channels. These 
activations are then transmitted to the core executing the subsequent layer. 

Figure 5 shows an example of the dataflow (color-coded for different 
operations/components), with the dot product being mapped on the computational 
memory array. 
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Figure 5. Dataflow execution of convolutional neural network layers in in-memory computing 
devices. 

While results are already been on display for physical communication links between 
cores, on-chip wireless communication opens up new possibilities for a plastic 
communication fabric across the chip, as shown in Figure 6. 

 

Figure 6. On-chip wireless communication for an in-memory computing-based architecture 
can allow new, plastic communication fabrics for inter-core communication.  

On the other hand, since the in-memory computing-based architectures can only 
provide matrix-multiplication computing, some functionalities such as activation and 
pooling layers still have to be computed in the digital platform, opening new frontiers 
for massively parallel architectures composed of PULP clusters coupled with in-
memory computing accelerators with much more flexibility than custom architectures. 

To estimate the bandwidth consumed by a typical embedded inference application, we 
used a MobileNet v2 network as benchmark. We estimated the bandwidth 
consumption as being related to weight access; using 4-bit per weights, and targeting 
full-throughput of 50 GOPS, the maximum bandwidth requirement is 768 Mb/s. 
Assuming a PULP system featuring  a 1.6 Gb/s Cypress HyperBUS [8] as external 
interface, although wireless communication would not improve performance on this 
specific use case, we could expect an energy improvement of around 5x when moving 
from HyperBUS (110 pJ/bit) to THz wireless channels (assuming 1 pJ/bit). Beyond that, 
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it is important to note that the improvements of wireless connectivity do not stop at 
increasing bandwidth or efficiency. In the in-memory computing case shown above, 
the reconfigurable connectivity allows the accelerator to be able to adapt to a myriad 
of different CNNs while minimizing overprovisioning of the network-in-package. We 
aim to evaluate this non-trivial improvement achievable in this case later in the project. 

 

3.2 Embedded CNN Training 

Modern Deep Neural Networks (DNNs) have to be trained on clusters of GPUs and 
millions of sample images to be competitive. Complex networks can take weeks to 
converge during which the involved compute machinery consumes mega joules of 
energy to perform the exa-scale amount of operations required. Inference, i.e., 
evaluating a network for a given input, provides many knobs for tuning and 
optimization. Substantial research has been performed in this direction and many good 
hardware accelerators have been proposed to improve inference speed and energy 
efficiency [11]. The training of DNNs is much harder to do and many of these 
optimizations do no longer apply. Stochastic Gradient Descent (SGD) is the standard 
algorithm used to train such deep networks [12]. 

 

Figure 7. Data dependency graph of the forward pass (above) and backward pass (below). 

Consider Figure 7 which shows the data dependencies when training a simple neural 
network. While inference is concerned only with finding y, training aims at finding the 
gradients (Du) which introduces a data dependency that requires us to temporarily 
store the output xi; y of every layer. This also prevents optimizations such as fusing 
activation or sub-sampling functions with the preceding layer, putting an extreme 
pressure on the memory systems of architectures used for training. Moreover, while it 
has been shown that inference is robust to lowering arithmetic precision [11], the 
impact of fixed-point or reduced-precision floating-point (FP) arithmetic on training is 
not yet fully understood, somehow limiting memory footprint minimization techniques 
such as extreme quantization. Until additional light is shed on the topic, a training 
accelerator must support 32 bit FP arithmetic to be able to compete with the ubiquitous 
GPU. 
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In this scenario, while most traditional architectures for training of deep neural networks 
belongs to the HPC domain, adaptation of DNNs to new tasks and functionalities in an 
embedded domain is considered an open research problem. Techniques based on 
one-shot and few-shot learning [13][14] tackle the problem by dividing the network in 
a feature-extractor, which is trained entirely offline to derive a metric embedding of the 
input, and a final stage clustering the various classes depending on their respective 
distance. A more complete solution to the problem is that proposed by continual 
learning [15][16] by modifying the loss and training algorithms in order to retrain a few 
layers of the network for a new task without forgetting the previous ones. There is 
significant interest in these technologies, particularly for the purpose of integration in 
robotic devices, however several problems (e.g., significant memory footprint) have to 
be solved before a full continual learning approach can be deployed on an embedded 
device such as PULP, potentially leverage THz channels for communication with in-
package memories. 

Another scenario where learning has to be integrated into the embedded devices is 
training of in-memory computing elements, in order to reduce negative impact of 
process variations between the in-memory computing cores used for DNN inference. 
This heterogeneous integration between the in-memory computing cores and the 
“high-precision” digital unit requiring floating-point support poses an extreme challenge 
on the communication interface between these two subsystems, that can be solved 
exploiting wireless THz channels developed in WiPLASH. 

 

Figure 8. Mixed-precision computational memory architecture for deep learning. 

To estimate the bandwidth consumed by an embedded learning application, we used 
a MobileNet v2 network as benchmark. We estimated the bandwidth consumption as 
being related to weight access in both directions (read for forward propagation, write 
for backward propagation); using 32-bit per weight, and targeting full-throughput of 50 
GOPS, the maximum bandwidth requirement is 12.3 Gb/s. The introduction in the 
system of THz wireless channels for communication with external memory would 
improve performance of the application by 7.6x over a system employing 1.6 Gb/s 
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HyperBUS interface [8], assuming a peak bandwidth of 100 Gb/s for THz wireless 
channels. Moreover, assuming a transfer efficiency of 1 pJ/bit, THz wireless channels 
would improve the energy efficiency of the application by more than one order of 
magnitude. 

 

3.3 Recommendation Systems 

Personalized recommendation is the task of recommending new content to users 
based on their preferences. In other words, deep learning-based recommendation 
systems are used throughout industry to predict rankings for news feed posts and 
entertainment content. Estimates show that up to 75% of movies watched on Netflix 
and 60% of videos consumed on YouTube are based on suggestions from their 
recommendation systems. Moreover, in 2018, McKinsey and Tech Emergence 
estimated that recommendation systems were responsible for driving up to 35% of 
Amazon’s revenue [17]. 

The main task of such services is the to accurately, and efficiently rank content based 
on users’ preferences and previous interactions (e.g., clicks on social media posts, 
ratings, purchases). Building highly accurate personalized recommendation system 
poses unique challenges as user preferences and past interactions with content are 
represented as both dense and sparse features. For instance, in the case of ranking 
videos, there may be thousands of potential videos that have been seen by millions of 
viewers. However, individual users interact with only a limited number of videos. This 
means interactions between users and videos are sparse. Sparse features not only 
make training more challenging but also require intrinsically different operations. 

 

Figure 9. Simplified DLRM architecture. 

Figure 9 shows a simplified architecture of state-of-the-art DNNs for personalized 
recommendation models used at Facebook. This so-called Deep Learning 
Recommendation Model (DLRM) consists of a variety of operations such as Fully 
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Connected (FC) layers, embedding, pooling, and non-linearities, such as ReLU. At a 
high-level, dense and sparse input features are separately transformed using FC 
layers and embedding tables respectively. The outputs of these transformations are 
then combined and processed by a final set of FC layers. The inputs, for a single user 
and single post, to recommendation models are a set of dense and sparse features. 
The output is the predicted click-through-rate (CTR) of the user and post.  Dense 
features are first processed by a series of FC layers, shown as the Bottom-FCs in 
Figure 9. On the other hand, sparse input features, represented as multiple vectors of 
sparse IDs, must first be made dense. Although each vector of sparse feature can be 
transformed to dense vectors using FC layers, its compute demands would be 
significant. Therefore, embedding tables are used. Each vector is paired with an 
embedding table, and each sparse ID is used to look-up a unique row in the embed-
ding table.  The rows of the embedding are then combined into a single vector. Finally, 
these vectors and the output of the Bottom-FC layers are concatenated, and processed 
by the Top-FC layers. 

A key distinguishing feature of DNNs for recommendation systems, compared to CNNs 
and Recurrent Neural Networks (RNNs), is the use of embedding tables. Embedding 
tables are used to transform sparse input features to dense ones. The dense 
representations are subsequently processed by a series of more traditional layers 
including, FC, pooling, and ReLU non-linearities. 

 

Figure 10. Train loss vs test loss with default DLRM parameters. 

DLRM is provided as open-source by Facebook implemented through PyTorch. This 
implementation runs with default values for different parameters, such as shape of the 
embedding, shape of the bottom and top MLP, activation functions, loss threshold, 
number of workers, sparse feature size, etc. The training loss vs. the test loss is shown 
in Figure 10 for the default parameters. For each specific application the optimal values 
of these parameters can vary. As the first step of profiling this DLRM implementation, 
we run it through different number of workers and batch sizes, while using Kaggle 
dataset. As shown in Table 3, these two parameters affect training time and GPU 
utilization. 
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Table 3. Training time, test loss, and GPU utilization with different number of workers and 
batch sizes. 

Batch Size Num. Workers Time (s) test_loss GPU Utilization (%) 

512 0 7.53 0.4588 2.11 

512 2 9.54 0.4589 2.89 

512 8 9.87 0.4587 3.28 

128 0 7.73 0.4568 4.2 

128 2 8.57 0.4569 3.6 

128 8 8.85 0.4566 2.9 

32 0 7.29 0.4558 5.95 

32 2 9.09 0.4556 4.22 

32 8 9.33 0.4556 2.32 

The most suitable architecture for this application seems to be Architecture #3, as this 
application has HPC requirements. Even in this context, sustaining communication 
requirements is a major challenge for state of the art (wired) interconnects. While such 
requirements vary across implementation and deployments, depending on a number 
of factors including batch size and architectural hyperparameters, they are consistently 
very high. As examples, we measured a peak bandwidth exceeding 1GB/s in our 
experiments targeting a Nvidia V100 GPUs, while Facebook indicates that, in their 
setup, DLRM is only completely compute-bound if the available bandwidth exceeds 
1TB/s.  

In this case, it is clear that the wireless interconnect will hardly achieve the bandwidth 
required to make this task completely computation-driven. In fact, it is of the architects’ 
best interest to explore how to best exploit the characteristics of the wireless 
interconnect with its limited bandwidth. For instance, besides using the wireless 
interconnect to accelerate the partial DNN runs, the low-latency broadcast can be used 
to distribute and gather tasks from the workers or fetch values from a centralized 
embedding table. However, as indicated previously, the complexity of HPC platforms 
makes it difficult to make even rough estimations of the improvement achievable by 
including wireless. For all these reasons, we defer the evaluation of potential speedups 
to later in the project.  
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3.4 Federated Learning 

As in standard DNNs, there are in the order of million parameters that define the model, 
a large amount of data is required to adjust the parameters of these DNNs. In an 
environment with distributed computation capabilities, Federated Learning (FL) 
technique can enable several processors to take in charge part of the computation 
locally to avoid having to send back sensible data to the cloud and can enable speedup 
with limited accuracy degradation [18]. Figure 11 presents the general structure of a 
FL architecture: several clients perform the training process on a reduced dataset and 
send their updated weights values (W i) to a server. Then the server performs an 
averaging operation and stream back the averaged weights values (W i+1) to all the 
clients. 

 

Figure 11. Structure of a Federated Learning architecture with n clients and one server.  

While FL is usually considered as a way to maintain privacy in the context of medical 
applications, in this project it can be considered in various ways: 

 In an Edge-level environment (Architecture #1 or Architecture #2), the in-
memory computing accelerator and PULP cluster capabilities are leveraged to 
accelerate the learning process and improve the energy efficiency of the clients. 
In this case, the bandwidth and improvements are similar to those discussed in 
previous sections.  

 In an HPC environment (Architecture #3), a wireless-enabled MPSoC can 
contain both the clients and the server in order to: (i) break down the bandwidth 
limitations by reducing the dataset required by the clients, (ii) leverage the 
reconfigurable point-to-point communication capability of the wireless 
interconnect as which of the clients access different data, and (ii) leverage 
steaming capabilities of wireless interconnect to perform the weight averaging 
operation in a highly efficient manner. Such operations are very memory 
demanding, given the huge number of parameters required by state of the art 
CNNs (e.g.: 4.2M for MobilnetV1). Hence scaling this application to a high 
number of clients is highly challenging from a communication bandwidth 
perspective. Considering again MobilnetV1 (with 8-bit weight quantization) and 
a 64-clients MPSoC, 336MB/s are required to execute a weight update 
operation in 100 ms.  
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3.5 Graph Neural Networks 

Even though these are important areas which have made them the focus of ANNs, 
most of the crucial data that is being generated does not come with a regular structure. 
Hence, in order to exploit the potential of Neural Networks in non-Euclidean data 
structures such as graphs, Graph Neural Networks (GNN) were introduced in [22]. It is 
interesting to note that GNNs were initially introduced as a generalization of the RNNs. 
Further, some of the well-known examples for scenarios modeled with graphs are 
traffic roads, computer networks, social media interactions, citation networks and 
chemical molecules. 

In a GNN, several neural network algorithms work over the graph structure, along its 
edges and nodes, with the aim of extracting information in an edge-centered, node-
centered or graph-centered manner. That is, depending on the application, one can 
choose to extract information from the nodes (e.g. whether a node belongs to a 
shortest-path solution [23]), edges (e.g. delay a link will suffer in a computer network 
[24]), or the complete graph (e.g. global properties of a molecule [25]). To do so, 
several types of GNN variants have been proposed: Non-local neural networks (NLNN) 
capture long-range dependencies of graphs by considering a weighted sum of all 
nodes (in space and time) taking into consideration the most relevant items by using a 
pairwise function. Related to them, Graph Attention Networks (GAT) leverage the 
attention mechanism to concentrate the focus on specific subsets of the graph, which 
make them worthy in variable input size applications. Relation Networks and Deep 
Sets are useful to extract global features in graph-centric implementations by focusing 
only on edge information and node information respectively. However, Message 
Passing Neural Networks (MPNN), considered a generalization of several previous 
works [25], are by far the most popular. An MPNN can be used to extract both node 
and edge embeddings as well as graph embeddings, by applying a message passing 
phase and a readout phase afterwards to the input graph. A particular class of MPNN 
are the Graph Convolutional Networks (GCN). Notably though, the same GNN 
operating principle, which consists of the propagation of a representation of nodes’ 
information along the edges until some defined convergence is achieved, is usually 
shared. A generalization of the Graph Networks concept, as well as an exhaustive 
literature review related to it can be found in [23].  

Additionally, to highlight the significance of the impact that GNNs have had since their 
conception, some of the most salient applications that we can find where GNNs have 
been utilized are the recommender systems, network optimization, community 
detection, pattern discovery, knowledge graphs, link prediction, properties prediction 
of structures, etc. Furthermore, some of the most popular datasets that are being 
utilized by the GNN community, and which will also be the candidates for our study, 
are Cora, PubMed, Reddit, CiteSeer, PPI, NELL, MNIST, CIFAR-10 and ImageNet. 

Given the significant popularity of MPNNs, which are a class of GNNs, in this section 
we elaborate upon their operational characteristics. Specifically, the inference run is 
composed by a T-step message passing stage and a readout stage. In the former, two 
neural networks (message function and update function) work together to allow the 
graph to dynamically interconnect and update its node and edge features. These NNs 
are trained so that they extract relevant representations of the neighbor nodes or 
edges, such as relative situation in the graph or implicit learnings that depend on the 
application. Therefore, in each of the T time steps, two NN computations are needed 
for each node. However, we will have extremely large weight sharing opportunities 



WiPLASH D4.1                                                                                 H2020-FETOPEN-863337 

www.wiplash.eu 25 January 28, 2021 

since both NN will be the same in each node (weight tying). Note that, the magnitude 
of T is a hyper-parameter that can be tweaked until obtaining a reasonable behaviour, 
although it is highly linked with the Banach Fixed Point (BFP) theorem. Next, in the 
readout phase, a third neural network gets as input the whole graph obtained in the 
previous stage and outputs a low-dimension representation of it. 

With this background, we now move onto exploring the problem of mapping a GNN in 
a hardware platform. Multiple challenges exist, as compared to the mapping of 
classical CNNs, for the case of GNNs.   

Firstly, a CNN, which can be understood as a particular GNN example over a regularly 
structured graph, enables a homogeneous dataflow to be deployed over the 
architecture. This helps to design a fairly regular architecture, for instance via systolic 
arrays. However, since GNNs work over irregular data, flexibility can be an asset to 
reach CNN-like architecture performances. We foresee that having the mechanisms 
provided by wireless interconnects, to heterogeneously and dynamically distribute 
workloads over the processing elements, will allow to customize its inference while still 
exploiting a general architecture.  

Further, a GNN will be running typical neural networks such as CNN and RNN models, 
scheduled in a specific manner to run iteratively over the features of the graph items. 
To accomplish this task, a control plane will be needed to orchestrate the queued tasks 
over the available PEs in order to obtain reasonable efficiencies by avoiding 
unnecessary data movement. For instance, high affinity nodes in the graph may need 
to exchange large amounts of data whereas lower affinity nodes may not, but this may 
change dynamically over time. Here, by affinity nodes we mean a set of nodes that are 
connected by multiple edges and share a strong relation.  And so, for such scenarios, 
a low-latency control plane alongside wireless interconnects can provide the necessary 
flexibility. For instance, the aforesaid setup can broadcast setup codes from a look-up 
table. This is similar to the flexible dataflow strategy followed in DNN accelerators like 
MAERI [35], where the dataflow choice can be change in real-time, but with the 
advantage of working in GNNs. A particular example of customized location of 
heterogeneous computation in a GNN accelerator could be by means of different 
precision/performance PEs. Subsequently, regions of the graph that require higher 
computational resources could be sent to that part of the accelerator -where more 
powerful cores are available- depending on the stage of the inference. This would allow 
for a flexible performance-cost optimization-based strategy. 

Additionally, a relevant strategy to follow when mapping GNNs into hardware is to 
consider graph partitioning, inherited from classical graph theory. In fact, the extremely 
limited number of works focusing on GNN execution on hardware are highlighting the 
importance of graph tiling [36, 37]. However, the process of partitioning leads to varying 
computational domains depending on the input graph and the result of the graph tiling. 
Moreover, as a consequence, at some point different -- and potentially distant -- 
processing elements focusing on different tiles may be subject to share their partial 
outputs due to the high degree of data reusability of these strategies. Specific 
accelerators that solve these heterogeneous workload mappings are challenging to 
design, and hence efficient wireless interconnects can potentially provide a convenient 
solution. 

In addition, as we previously stated, large amount of weight reusability is possible in 
MPNN due to the nature of message and update functions. We foresee that these 
parameters will be required in a large portion of the architecture cores after being 



WiPLASH D4.1                                                                                 H2020-FETOPEN-863337 

www.wiplash.eu 26 January 28, 2021 

computed and stored in memory. Therefore, the distribution stage could be significantly 
enhanced by leveraging wireless-enabled broadcast scheme. 

Thus, targeting the high performance computing architecture, multiple chips will be 
available in order to obtain a high computational throughput. Furthermore, in a wireless 
architecture, the broadcast transmissions, which will be essential for GNNs, are 
naturally provided by the transceivers without any extra cost as compared to the 
unicast transmissions. All of these represent intuitive and yet reasonable opportunities 
WiPLASH has, with regards to tackling the problem of GNN acceleration [36]. 

Given the relevance of operational characteristics and the target hardware 
architectures, it is imperative to understand MPNN algorithm and its mathematical 
structure, so as to be able to determine specific areas for optimization via wireless 
networks. And so, the MPNN algorithm working over a graph G = (V,E), as defined in 
[38], is as follows:  

 

where the message function is:   

 

in which ht
v denotes the feature vector of node v at time step t, evw denotes the feature 

of the edge linking nodes v and w, and N(v) represent the neighbors of node v. Mt is 
the Message function. 

The update function is defined as: 

 

where Ut is the Update function. A particular example [38] is: 

 

 

where A and b are matrix and bias valued ANN, which do not depend on t. GRU 
represents Gated Recurrent Unit. Therefore, their parameters can be broadcasted to 
all PEs. 

Depending on the message and update functions, the equations above can be 
rewritten in a matrix form. For instance, the computing of a layer in a GCN with linear 
message function can be expressed as X(t+1) = σ(A·X(t)·W(t)), where A is the adjacency 
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matrix, X(t) is the matrix containing feature vectors of all vertices at layer or time step t, 
and W(t) is the weight matrix at later or time step t. The dimension of A depends on the 
input graph, whereas the value of X and W, as well as the number of layers, depend 
on the GNN architecture from input to hidden layers to output. 

 
Figure 12. Representative set of graphs for different GNNs, from [36] 

To illustrate the memory bandwidth requirements, let us take the Cora dataset from 
Figure 12. Assuming a single layer and 8-bit precisions in all variables, the total data 
to transfer the three matrices from main memory would be (2708 x 2708) for A, (2708 
x 1433) for X, and (1433 x 7) for W. The sum equals to 10.7 MB. Larger matrices would 
lead to larger transfers, whereas it is also worth noting that some techniques such as 
graph sampling reduce the burden of loading the adjacency matrix. 

In the Cora example, if we want an inference latency on the order of 10 ms, then the 
required bandwidth is on the order of 1 GB/s. Assuming that the inference latency stays 
fixed and that we do not use sampling, the requirements at larger graphs can easily 
increase by orders of magnitude. Not surprisingly, works on GNN acceleration consider 
HBM modules with bandwidths of 68 GB/s [41], 256 GB/s [36, 39], or 459 GB/s [40].  

With the bandwidth figures shown above, it is unlikely that the wireless interconnect 
will just blindly replace or complement wired networks to increase bandwidth. Instead, 
with the background about the target architecture and structure of the GNNs now 
established, we explore the various opportunities that exist in adapting to the new GNN 
computational requirements as well as in optimizing its inference. Concretely, we 
present two scenarios where the wireless infrastructure in an HPC can be utilized for 
the purpose of GNN acceleration. 

 

(i) Heterogeneous scheduling 

At different time steps, different regions of our PE array could be working on different 
regions of the graph, because of the iterative nature of the message passing algorithm 
or because of different partitioning strategies. Alternatively, some of the PEs could 
work on solving the message functions, while others can be utilized for the update 
functions. In all of these cases, flexible scheduling is mandatory, and wireless 
interconnects can enable either the control plane for it or the data management directly, 
if bandwidth permits. Figure 13 shows a hypothetical scenario indicative of how the 
aforementioned strategy can be realized. Concretely, at step “t”, we have 4 partitions 
of our original graph that are being processed on 4 clusters of our HPC. However, as 
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the algorithm progresses, at step “t+1” the graph has only 3 partitions, wherein the 
rightmost partition necessitates more resources than the other partitions. In such a 
scenario, WiPLASH can potentially restructure the original scheduling and assign more 
processor clusters to the task corresponding to processing the rightmost graph 
partition. 

 

 

Figure 13. Heterogeneous scheduling managed via wireless interconnects. 

 

(ii) Weight broadcasting 
 

We can leverage wireless broadcast capabilities to distribute message and update NN 
learnt parameters in a few cycles to all PEs. InFigure 14, different portions of our PE 
array are working on different nodes and edges, but the weights to be applied in each 
of them can be broadcasted. 
 

 
Figure 14. Weight broadcasting using wireless interconnects. 
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To summarize, for designing a complete GNN hardware platform, we can split the 
computational work in two layers: an upper layer that orchestrates (partitions and 
schedules) the in-graph workloads (graph-centric) and a bottom layer that runs and 
splits the specific neural networks (NN-centric). Considering this approach, a baseline 
can be obtained by taking estimates from classical DNN accelerators and determining 
the extra consumption of the graph-level tasks. And so, reference [36], to the best of 
our knowledge is the only work in literature that tackles directly the problem of GNN 
acceleration on specific hardware architectures. Hence, given it is the state-of-the-art 
strategy, we will utilize it as our baseline for comparison. 

Evaluating the acceleration in a GNN is complex even in specialized hardware systems 
because the optimal dataflow depends on the characteristics of the graph and of the 
GNN layers. This, together with the non-trivial role of the wireless interconnect in 
adapting the accelerator/HPC platform to the most optimal dataflow, complicates the 
estimation of gains related to wireless technology. Therefore, we defer this task to 
preliminary simulations later in the project. 

 

3.6 Next Generation Sequencing 

Genome sequencing is also one of the first steps in understanding a new disease, its 
effects, development of diagnostic tests and possible cure and vaccines for it. This 
process should be quite quick and efficient is case of a new disease outbreak, in order 
to curtain it, as has been evident during the recent outbreak of the novel coronavirus 
(COVID-19) [42]. 

Genome sequencing is the process of determining the DNA sequence or the order of 
bases As, Cs, Gs, and Ts making up the organism's genome. Next-generation 
sequencing (NGS) is a high-throughput genome sequencing method. In sequence 
alignment, which is one of the first steps in NGS, a sequence read is aligned or 
checked against a genomic reference for regions of similarity [43]. This process must 
tolerate differences between the query read and the reference genome, due to errors 
in the sequencing process and genuine differences between organisms. 

There are several optimized sequence alignment NGS applications, including some of 
the most widely used, relying upon the FM-index data structures and search 
algorithms. Bowtie2 [44], BWA-MEM [45] and HISAT2 [46] are three of the most 
important state-of-the-art widely used sequencing application that use FM-Index. 

The FM-index is a data structure that allows fast substring searches over large texts 
[47]. FM-index is based on several data structures and algorithms, such as Suffix Array 
and Burrows-Wheeler Transform (BWT). A diagram of the flow of an FM-index search 
is depicted in Figure 15. 

The most suitable architecture for this application seems to be Architecture #3, as this 
application has HPC requirements. Furthermore, this application performs a very large 
numbers of random memory reads for performing the searches, so it requires a very 
high memory bandwidth (to main memory, most likely, as the genome is quite large), 
together with low latency. Indeed, our explorations of genomic sequencing algorithms 
[48] highlighted that peak memory bandwidths of 17GB/s 10GB/s and 8 GB/s were 
required by Bowtie2, BWA-MEM and HISAT2 (respectively) to outperform the state of 
the art Intel KNL system when employing clusters of ARM processors. For these 
reasons, improvement may not come by the sheer increase of bandwidth, but also from 
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architectures capable of coping with the irregular accesses to main memory. For this 
reason, it is not trivial to infer the exact role of the wireless interconnect and its impact 
on the performance and efficiency of genome sequencing in wireless-enabled HPC 
architectures. For this, we will defer the assessment of potential to later in the project. 

 

Figure 15. FM-index search 

3.7 Real-Time Video Surveillance 

The real-time video surveillance application proposes the use of an environment 
consisting on the deployment of Ultra High definition cameras (edge devices) that 
record video in 4K resolution combined with a H265 encoding that reduces the frame 
size to almost the half than H264. The cameras, besides being the recording system, 
are also part of the computing system that will perform image recognition inference 
combining the computation capabilities of the edge devices (cameras in this case) with 
edge data centers (DCs), when needed. Video transcoding and streaming represents 
today 58% of the overall downstream traffic [49], whereas real-time video analytics 
(powered by CNNs) are becoming one of the main “killer applications” for artificial 
intelligence, with already a great impact in various domains of our daily life [50]. 

Real-time H265 video encoding is performed by means of the Kvazaar [51] real-time 
video transcoder application, whereas image classification is performed with state-of-
the-art CNNs (such as Alexnet, MobileNet v1 and v2, and ResNet50) due to their 
current relevance in edge devices. 

Both encoding and classification are memory-intensive. Moreover, they have to abide 
to real-time constraints. These characteristics put stringent requirements on the 
interconnect, as typically video streams can be encoded at high frame rates (up to 
24FPS) and resolutions (up to 640x480 pixels) for high-performance video analytics 
scenarios such as drone navigation and autonomous driving applications. Indeed, for 
the aforementioned settings, we measured a peak bandwidth of 16 GB/s. 
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4 Concluding Remarks 

This deliverable identified applications workloads to be used in the project as case 
studies. First, it introduced the hardware architectures that will be evaluated in the 
project, belonging to three different domains: specialized in-memory computing-based 
hardware accelerators, massively parallel multi-core scalable platforms, and more 
traditional HPC systems. Second, it introduced and presented the target applications 
for the project, together with key performance indicators related to the implementation 
and optimization of the proposed applications to the target platforms. The quantitative 
evaluations related to application mapping and optimization on the target WiPLASH 
platforms will be provided in D4.3, but here we make some preliminary remarks. 

We have chosen a set of benchmarks with the focus on DNNs, but showing a wide 
range of characteristics that make them suitable for different architectures. Starting 
with DNNs for embedded systems and specialized accelerators, to genome 
sequencing or recommendation systems more suitable to HPC systems. The 
bandwidth requirements vary widely, from a few tens of Mb/s in embedded DNN 
inference to Tb/s ranges in DLRM or GNNs. 

Taking into consideration that conservative assumptions lead to considering wireless 
interconnects with a few tens of Gb/s bandwidth, and more aggressive ones pointing 
to a few hundreds of Gb/s, then it is clear that the wireless interconnect will not simply 
replace or augment the wired counterpart for reasons of bandwidth. Instead, the low 
latency, system-level flexibility and inherent broadcast capabilities should be put in 
action to enhance the architecture. In fact, the broadcast/multicast capability alone can 
represent a boost of the effective impact of wireless as a single broadcast channel at 
1 Gb/s just requires a transmission of 1 Gb/s regardless of the number of receivers. In 
the wired case, on the contrary, addressing N cores at 1 Gb/s requires a much larger 
bisection bandwidth because it requires the delivery of N packets. Further, in-memory 
computing arrays can exploit the reconfigurability to implement adaptive accelerators 
able to optimally map multiple CNNs without requiring overprovisioning at the 
interconnect. 

The potential gains in efficiency and performance of introducing wireless interconnects 
depend on the application and architecture. On the one hand, the evaluation is 
straightforward in the embedded DNN and the estimated gains can easily reach 10X 
in efficiency (inference and training) and performance (in training only, because 
inference does not require very high bandwidth). On the other hand, the architectural 
considerations make it relatively difficult to evaluate the potential gains of including a 
wireless interconnect in the rest of architectures. However, our previous experience in 
wireless-enabled architectures [52] tells us that, depending on the application 
characteristics and the architecture, improvements can reach 10X as well. In any case, 
we defer the evaluation of HPC architectures to later in the project, when the simulator 
will be available for architectural explorations, and rather focus the work on the DNN 
acceleration initially. Later in the project, the other applications shall be explored 
through batch simulations in a few selected HPC architectures that do not require fine-
tuning or mapping of the application on specialized hardware. 
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