

Horizon 2020 Program (2014-2020)

FET-Open Novel ideas for radically new technologies

FETOPEN-01-2018-2019-2020

Architecting More than Moore – Wireless Plasticity for
Massive Heterogeneous Computer Architectures †

D4.1: AI Applications Workloads

Contractual Date of Delivery 31/03/2020

Actual Date of Delivery 31/03/2020 (Update: 28/01/2021)

Deliverable Security Class Public

Editor Davide Rossi

Contributors UNIBO (leader), EPFL, IBM, UPC

Quality Assurance Marina Zapater (EPFL), Albert Cabellos (UPC)

† This project is supported by the European Commission under the Horizon 2020 Program with Grant agreement
no: 863337

Ref. Ares(2021)721546 - 28/01/2021

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 2 January 28, 2021

Document Revisions & Quality Assurance

Deliverable Number D4.1

Deliverable Responsible UNIBO

Work Package WP4

Main Editor Davide Rossi

Internal Reviewers

1. Marina Zapater
2. Albert Cabellos

Revisions

Version Date By Overview

1.0 09/02/2020 Davide Rossi First draft

1.1 03/03/2020 Davide Rossi, Marina
Zapater, Alexandre

Levisse, Sergi
Abadal, Irem Boybat

Integrated contributions by
EPFL, IBM, UPC.

1.2 06/03/2020 Davide Rossi First Complete draft

1.3 29/03/2020 Davide Rossi, Marina
Zapater, Albert

Cabellos

Integrated Internal
Reviewers Comments

1.4 30/03/2020 Davide Rossi,
Alexandre Levisse

Integrated Additional
Contribution by EPFL

1.5 31/03/2020 Sergi Abadal Final checks, format

1.5.3 16/12/2020 Davide Rossi,
Francesco Conti,

Giovanni Ansaloni,
Sergi Abadal

First pass on implementing
feedback from the reviewers

1.5.4 18/12/2020 Davide Rossi Merged contributions from
partners

1.5.5 26/01/2020 Davide Rossi,
Francesco Conti

Updated DNN training
numbers

Legal Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is
given that the information is fit for any particular purpose. The above referenced
consortium members shall have no liability to third parties for damages of any kind
including without limitation direct, special, indirect, or consequential damages that may
result from the use of these materials subject to any liability which is mandatory due to
applicable law. © 2019 by WiPLASH Consortium.

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 3 January 28, 2021

Executive Summary

The main subject of D4.1 is to identify applications workloads to be used in the project
as case studies. The workloads (i.e.) relevant kernels extracted from the identified
applications will be used within the project for the following purposes: (1) as a baseline
on “traditional” state-of-the-art architectures, to highlight bottlenecks, and (2) to
evaluate the effect of the proposed THz wireless channels. The presented applications
are relevant for a wide variety of real-world domains belonging but not limited to
artificial intelligence applications, identified as main driver for the WiPLASH project,
and they were selected both for their relevance and for their suitability to be accelerated
by THz wireless channels. The deliverable discusses the bandwidth requirement of the
selected applications and either estimates their rough potential of acceleration or points
out to methods to evaluate such potential. The deliverable will also introduce the
hardware architectures that will be evaluated in the project, belonging to three different
domains: specialized in-memory computing based hardware accelerators, massively
parallel multi-core scalable platforms, and more traditional HPC systems. This
deliverable is related to task T4.1: “Heterogeneous System On Chip”.

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 4 January 28, 2021

Abbreviations and Acronyms

SIP System In Package

PULP Parallel processing Ultra Low Power platform

SoC System On Chip

MCU MicroController Unit

RISC Reduced Instruction Set Computer

QSPI Queued Serial Peripheral Interface

I2C Inter-Integrated Circuit Bus

I2S Inter-Integrated Circuit Sound

UART Universal Asynchronous Receiver-Transmitter

DDR Double Data Rate

DMA Direct Memory Access

MAC Multiply And aCcumulate

FPU Floating-Point Unit

FMAC Floating Multiply And aCcumulate

HWPE Hardware Processing Element

AI Artificial Intellingence

ANN Artificial Neural Network

CNN Convolutional Neural Network

DNN Deep Neural Network

SGD Stochastic Gradient Descent

GPU Graphic Processing Unit

HPC High-Performance Computing

DLRM Deep Learning Recommendation Model

FC Fully Connected

CTR Click Through Rate

BFP Banach Fixed Point

ReLU Rectified Linear Unit

FL Federated Learning

GNN Graph Neural Network

RNN Recurrent Neural Network

PE Processing Element

KPI Key Performance Indicator

DNA Deoxyribo Nucleic Acid

NGS Next-generation sequencing

BWT Burrows-Wheeler Transform

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 5 January 28, 2021

The WiPLASH consortium is composed by:

UPC Coordinator Spain

IBM Beneficiary Switzerland

UNIBO Beneficiary Italy

EPFL Beneficiary Switzerland

AMO Beneficiary Germany

UoS Beneficiary Germany

RWTH Beneficiary Germany

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 7 January 28, 2021

Table of Contents

DOCUMENT REVISIONS & QUALITY ASSURANCE .. 2

EXECUTIVE SUMMARY... 3

ABBREVIATIONS AND ACRONYMS... 4

TABLE OF CONTENTS .. 7

LIST OF FIGURES .. 8

LIST OF TABLES .. 9

1 INTRODUCTION ... 10

2 TARGET ARCHITECTURES .. 11

2.1 IN MEMORY ACCELERATORS-CENTRIC ARCHITECTURES ... 11
2.2 LOW-POWER COMPUTING PLATFORMS FOR MASSIVELY PARALLEL PROCESSING 12
2.3 HPC ARCHITECTURES ... 14

3 APPLICATIONS ... 15

3.1 EMBEDDED CNN INFERENCE ... 16
3.2 EMBEDDED CNN TRAINING .. 18
3.3 RECOMMENDATION SYSTEMS .. 20
3.4 FEDERATED LEARNING ... 23
3.5 GRAPH NEURAL NETWORKS .. 24
3.6 NEXT GENERATION SEQUENCING .. 29
3.7 REAL-TIME VIDEO SURVEILLANCE ... 30

4 CONCLUDING REMARKS ... 31

BIBLIOGRAPHY .. 32

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 8 January 28, 2021

List of Figures

Figure 1. In-memory computing unit. .. 11

Figure 2. In-memory computing-based architecture composed of computational
memory cores. ... 12

Figure 3. PULP SoC Architecture. .. 13

Figure 4. Possible Embodiment of PULP SoC augmented with Wireless THz
Channels and In-Memory computing cores. ... 14

Figure 5. Dataflow execution of convolutional neural network layers in in-memory
computing devices. .. 17

Figure 6. On-chip wireless communication for an in-memory computing-based
architecture can allow new, plastic communication fabrics for inter-core
communication. .. 17

Figure 7. Data dependency graph of the forward pass (above) and backward pass
(below). .. 18

Figure 8. Mixed-precision computational memory architecture for deep learning. 19

Figure 9. Simplified DLRM architecture. ... 20

Figure 10. Train loss vs test loss with default DLRM parameters. 21

Figure 11. Structure of a Federated Learning architecture with n clients and one
server. .. 23

Figure 12. Representative set of graphs for different GNNs, from [36] 27

Figure 13. Heterogeneous scheduling managed via wireless interconnects. 28

Figure 14. Weight broadcasting using wireless interconnects................................... 28

Figure 15. FM-index search.. 30

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 9 January 28, 2021

List of Tables

Table 1. Design parameters for the application of deep learning inference on in-
memory computing-based architecture. ResNet-32 network for the task of CIFAR-10
image classification is taken as a reference. The crossbar array is assumed to be
composed of phase-change memory, fabricated in 90 nm technology node. 12

Table 2. WiPLASH Applications summary and main features. 16

Table 3. Training time, test loss, and GPU utilization with different number of workers
and batch sizes. ... 22

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 10 January 28, 2021

1 Introduction

Recent years have seen the emergence of heterogeneous architectures integrating
multiple general-purpose, specialized computing units, and memories. This
diversification trend comes together with the extreme parallelism, with energy being
the main driver for such architectures, an objective that cannot be met anymore with
the traditional scaling-driven optimization cycles that have maintained Moore’s Law
trend for decades. The diminishing returns of transistor scaling, the severe scalability
issues of conventional memory–interconnect architectures of heterogeneous
massively parallel processors, and the cost of manufacturing large chips are causes
of this paradigm shift.

Hardware specialization opens a huge range of possibilities from the architecture
perspective, but also urgently calls for key enablers at the integration and
interconnection stages. The use of System-in-Package (SiP) and chiplet systems
based on 2.5D stacking on silicon interposer, in embedded and high-performance
environments, are the most common alternatives, often employing carefully designed
variants of a wired Network-on-Chip (NoC) to transport data between the different
components. However, as we move off-chip, pin constraints limit the bandwidth and
flexibility of the available communication schemes, narrowing down the applicability
and hindering the scalability of heterogeneous systems. In this context, exploiting the
wireless plasticity pioneered by the WiPLASH project, thanks to the implementation of
wireless communication at the functional unit level, is expected to lead to a radical step
further in computing by designing a new breed of massive heterogeneous architectures
at extreme scales.

This deliverable aims at providing an overview of the application workloads identified
by the consortium during the first six month of project, and mapping these applications
to the three different domains envisioned. The deliverable will first provide an initial
specification of the architectures targeted by the WiPLASH project, in the three
different domains: 1) in-memory computing based architectures, 2) massively parallel
heterogeneous programmable systems 3) HPC systems. Furthermore, it will describe
the identified applications, their relevance for the scientific and industrial community,
and their suitability to be accelerated by the architectures developed in WiPLASH. We
also outline the bandwidth requirements of these applications and the potential
acceleration offered by the sheer increase of bandwidth offered by addition of the
wireless links.

The reminder of the document is organized as follows. Section 2 will provide an
introduction to the WiPLASH architectures, Section 3 will describe the proposed
applications and their workloads relevant to the WiPLASH architectures, Section 4 will
provide some final remarks.

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 11 January 28, 2021

2 Target Architectures

This section provides a brief introduction of the architectures explored within
WiPLASH, with the goal of understanding the suitability of the domain of applications
to architectures targeted.

2.1 In Memory Accelerators-Centric Architectures

In-memory computing is an emerging computing paradigm that could enable the
execution of various applications, such as deep learning inference, at extremely high
energy efficiency and throughput. Among the others, one interesting approach based
on in-memory computing is based on memory arrays computing fundamental
operations such as dot products in the analog domain with extremely high energy
efficiency. The fundamental unit of in-memory computing is a set of memory devices
organized in a crossbar array, as depicted in Figure 1. A matrix-vector multiplication
can be executed in constant time by storing the matrix elements as conductances of
the memory devices and applying the vector values as voltage levels on the word lines.
Owing to Ohm’s law and Kirchhoff’s current laws, the result of the matrix-vector
multiplication is obtained as currents on the bit lines. Note that both conventional
charge-based memory devices and emerging resistive-based devices are good
candidates for in-memory computing.

Figure 1. In-memory computing unit.

A computational memory core can be defined as a unit composed of the memory
crossbar array, the digital processor, and input and output memories. A multitude of
such interconnected cores composes the in-memory computing-based architecture.
During execution, the output of a computational memory core is passed as an input to
another computational memory core, as shown in Figure 2. Hence, the data is
transferred from one core to the next in a pipelined fashion. In the execution of a
dataflow on the in-memory computing-based architecture, the communication fabric is
of significant importance, allowing the pipeline to run unstaggered and ensuring
maximum throughput. The in-memory computing-based architecture can leverage on
the constant time complexity of the matrix-vector multiplication to execute with
unprecedented performance deep learning tasks such as image classification and
natural language processing.

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 12 January 28, 2021

Figure 2. In-memory computing-based architecture composed of computational memory
cores.

For a sample application of deep learning inference (see Section 3.1.1 for further
details), the in-memory computing-based architecture results in the design parameters
shown in Table 1.

Metric Value

Number of cores 34

Data rate (per core) 5 Gbps

Size of core 576x576

Energy consumption per core 133 nJ

Degree of connectivity Max. 3 channels (3 interconnected cores)

Reconfigurability Desired

Table 1. Design parameters for the application of deep learning inference on in-memory
computing-based architecture. ResNet-32 network for the task of CIFAR-10 image

classification is taken as a reference. The crossbar array is assumed to be composed of
phase-change memory, fabricated in 90 nm technology node.

2.2 Low-power computing platforms for massively parallel
processing

In order to improve the programmability of computing platform with respect to
accelerator-centric in-memory computing matrixes, in WiPLASH we leverage the
architectural template of the open-source PULP platform. PULP (Parallel processing
Ultra Low Power platform) is a design-configurable, scalable clustered many-core
computing platform, written in synthesizable System Verilog, that allows to define at
design-time its configuration with as many computing clusters as the applications
require. Hence the same architectural template can be used both in the context of low-
end applications and as general-purpose accelerator for high performance computing
systems.

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 13 January 28, 2021

Figure 3. PULP SoC Architecture.

PULP SoCs [1] are built around an advanced MCU controlled by a 32-bit RISC-V
processor and a full set of peripherals typical of low-power microcontrollers, as shown
in Figure 3. It includes all the peripherals typical of low-power microcontrollers such as
QSPI, I2C, I2S, parallel camera interface and UART. While in the current instance of
PULP platform on-chip memory is extended via an up to 32 Mbytes DDR HyperBus
interface (800 Mb/s), which is the peripheral providing highest performance with wired
communication, for the low-end performance embodiment (MCU like). Data transfers
from/to the peripherals are managed by a multi-channel I/O DMA (μDMA) to minimize
the amount of interactions and the workload of the controlling core when performing
IO. In the high-end embodiments of the platform, the peripheral subsystem can be
replaced by models of high-performance memory controllers (e.g. DDR4). WiPLASH
will explore mode advanced IO interfaces based on THz wireless channels.

When the computational requirements of applications cannot be satisfied by the
controlling processor. The cluster, residing on a dedicated voltage and frequency
domain, can be turned on and adjusted to the right voltage and frequency. It contains
a parametric number of RISC-V cores supporting the RVC32IM instruction set [2], plus
extensions targeting energy-efficient digital signal processing such as hardware loops,
load/store with pre/post increment, multiply and accumulate (MAC) vector instructions
(RVC32IMFX) [3]. A parametric number of floating-point units (FPU) can also be
shared among the processors of the cluster, implementing common floating point
operations including FMAC, a key operation for near sensor tasks such as filtering and
neural networks. A multi-ported and multi-banked tightly coupled data memory is
accessible in just one cycle by all processors and hardware assistance for
synchronization are also provided.

A DMA engine optimized for multi-core clusters ensure that data can be moved in and
out the cluster with the necessary efficiency, although DMA configuration is the direct
responsibility of the programmer (i.e. the data memory is not a cache). Dedicated
shared memory hardware processing elements (HWPE) can be added to the cluster
to improve performance and energy efficiency whenever application requirements
cannot be satisfied by purely parallel software computation [4]. One possible
customization of the PULP clusters in WiPLASH leads to the exploitation of PULP
clusters has heterogeneous, wireless THz channels augmented, in-memory computing
engines coupling programmable processors with the accelerators described in
previous section, as depicted in Figure 4.

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 14 January 28, 2021

Figure 4. Possible Embodiment of PULP SoC augmented with Wireless THz Channels and
In-Memory computing cores.

2.3 HPC Architectures

HPC architectures are comprising one or several clusters of high-performance multi-
core systems, either RISC-V or ARM, connected to in-memory accelerators. Such
complex and heterogeneous system cannot be emulated PULP VirtualPlatform, but
can be simulated with gem5-X [5], running a full Linux OS distribution (as a result of
the work performed in WP5).

Gem5-X is an extended version developed in EPFL of the gem5 architectural
simulator. Simulation with gem5-X can consider in-order cores, out-of-order cores or
any combination of both (it can support up to 64 in-order cores in a single simulation).
Architectural extensions can be introduced and their effects assessed on real
applications running. For example, gem5-X supports High Bandwidth Memories (HBM)
and in-cache computing or enables the introduction of new instructions. Such a
simulation model is validated and fine-tuned against characterizations against RISC-
V, ARM and x86 server platforms. Gem5-X simulations calibrated for a ARMv8 A53 in-
order core found on the ARM Juno development board, and running an Ubuntu 18.04
LTS software environment demonstrates less than 4% timing inaccuracy on profiling
tests compared to physical hardware.

HPC architectures exhibit higher thermal dissipation than low power architectures,
thereby coupling with thermal simulations can be required to ensure the correct
functionality of the proposed architecture. Power traces can be extracted from the
gem5-X simulator and fed into the thermal simulator 3D-ICE [6] to determine
associated thermal dissipation. 3D-ICE simulations are compared against real
measurements and show off less than 7% error.

Considering the previously introduced architectures and simulation platform, wireless
interconnect and protocols can be implemented between clusters, cores, or between
clusters/cores and accelerators. Such a simulation framework enables to determine,
for a given application and a set of constraints, the most optimized architecture for a
power/performance/thermal target.

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 15 January 28, 2021

3 Applications

This section provides an overview of the applications proposed in WiPLASH, starting
from more traditional convolutional neural networks inference and training, to emerging
deep learning applications such as DLRM systems and other applications relevant to
the scientific and industrial communities not belonging to AI.

The applications are summarized in Table 2, which provides also some of the KPI
ranges expected for the applications and the mapping of the applications on the target
architectures. The table also distinguishes between applications that will be evaluated
in specialized hardware-based architectures and deeply embedded platforms, from
those that would be evaluated in high-performance systems with a more complex
architecture. The distinction is necessary because the effort required to implement and
optimize applications on specialized hardware-based and deeply embedded platforms,
such as array-based architectures and deeply embedded multi-core systems with
explicitly managed memory hierarchy, is much higher than the effort required for high-
performance systems with flat memory hierarchy and operating systems [7].

For the reasons above, the studies related to hardware-based and deeply embedded
architectures is expected to be restricted to the well-known application domains of
inference and training of embedded deep neural networks such as MobileNets. These
applications have relatively small memory footprints (up to 8MB for inference and up
to 64 MB for training), still available in DRAM memories for deeply embedded
applications such as Cypress HyperRAM [8], and APMEM [9]. These applications are
still expected to take advantage of the high bandwidth (orders of magnitude larger than
SoA devices), low-latency and reconfiguration capabilities of THz wireless channels
due to the extremely limited on-chip memory available in deeply embedded devices
(typically up to 1MB for embedded AI processors) [10].

The peak efficiency expected for these systems is in the range of TOPS/W, thanks to
the exploitation of embedded in-memory computing based accelerators. Inference
problems more suitable to be accelerated by this kind of units. On the other hand,
training problems also require both inference and backward passes, also requiring
floating-point (high-precision) computations degrading on average the overall energy
efficiency of the application. The other emerging applications are more suitable for
high-performance computing architectures, featuring larger memory footprints and a
peak efficiency expected to be in the range of hundreds of GOPS.

In order to evaluate the potential benefits of augmenting the described platforms with
THz wireless communication capabilities, we have computed the bandwidth
requirements for the different applications. Bandwidth requirements have to be
intended as the bandwidth needed each application in order to be 100% compute
bound (in other words, 0% communication bound). The bandwidth is provided as a
range as for the application performance: the larger is the performance expected for
each application (GOPS), the larger the bandwidth necessary to sustain this
performance will be. However, aligned with the considerations above, we again note
that the bandwidth improvements would lead to predictable performance gains ONLY
in the case of specialized architectures. On the other hand, in complex HPC
architectures, increasing the interconnect bandwidth does not necessarily directly
correlate with predictable speedups due to the effect of the memory hierarchy or the
operating system. In that case, estimating the gains of the wireless technology will
require full system simulations.

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 16 January 28, 2021

Application Leader

M
e

m
o
ry

 F
o

o
tp

ri
n
t

[M
B

]

B
a
n

d
w

id
th

 r
e

q
u
ir
e

m
e
n

t

[M
b
/s

]

P
e

rf
o

rm
a
n
c
e
 [

G
O

P
S

]

P
o

w
e

r
E

n
v
e

lo
p
e

 [
m

W
]

E
ff

ic
ie

n
c
y
 [

G
O

P
S

/W
]

G
P

 C
o
m

p
u
ti
n
g

 P
la

tf
o

rm
s

S
p
e

c
ia

liz
e
d

 P
U

L
P

 P
la

tf
o

rm

A
c
c
e
le

ra
to

r-
C

e
n

tr
ic

 P
la

tf
o

rm

Embedded DNN
Inference

IBM 1-8 15-750 1-50 10-3K 500-5K ✔ ✔

Embedded DNN
Training

UNIBO 8-64
240-
12K

1-50 10-3K 100-1K ✔ ✔

DLRM EPFL 1K-20K 8K-1M 100K 100K-400K 250-1K ✔

Federated Learning EPFL 1-100 4K-40K 1-500 1K-10K 100-1K ✔

Next-generation
sequencing

EPFL 1K-4K
15K-
150K

10K-50K 50K-200K 200-250 ✔

Real-time video
surveillance

EPFL 10-4K
50K-
150K

10-50 5K-10K 1-5 ✔ ✔

Graph Neural
Networks

UPC 10-10K 1K-1M 50-8K 2K-300K 100-700 ✔ ✔

Table 2. WiPLASH Applications summary and main features.

3.1 Embedded CNN Inference

Lately, Artificial Neural Networks (ANNs) have been extensively used in regular data
domains. Specifically, Convolutional Neural Networks (CNNs or ConvNets) have been
exploited for images, video, sound recordings, etc., which has consequently allowed
us to perform relevant tasks over them such as image classification [19], object
detection [20] and pose estimation [21] among others. Most ConvNets are built from
the same basic building blocks: convolution layers, activation layers, and pooling
layers. One sequence of convolution, activation, and pooling is considered a stage,
and modern deep networks often consist of multiple stages.

In-memory computing-based architectures can leverage on the constant time
complexity of the matrix-vector multiplication to execute with unprecedented
performance convolutional layers of deep learning tasks. In the in-memory computing-
based architecture, the dataflow occurs as such: the layers of the CNN are each
mapped to the cores. The execution occurs in a pipelined fashion across the dot
products: the core assigned to the l-th layer holds in its input memory the activations
calculated and transmitted by the core assigned to the (l-1)-th layer. When enough
input activations are present in its input memory, one core calculates one dot product,
resulting in the output activations from a pixel position across all channels. These
activations are then transmitted to the core executing the subsequent layer.

Figure 5 shows an example of the dataflow (color-coded for different
operations/components), with the dot product being mapped on the computational
memory array.

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 17 January 28, 2021

Figure 5. Dataflow execution of convolutional neural network layers in in-memory computing
devices.

While results are already been on display for physical communication links between
cores, on-chip wireless communication opens up new possibilities for a plastic
communication fabric across the chip, as shown in Figure 6.

Figure 6. On-chip wireless communication for an in-memory computing-based architecture
can allow new, plastic communication fabrics for inter-core communication.

On the other hand, since the in-memory computing-based architectures can only
provide matrix-multiplication computing, some functionalities such as activation and
pooling layers still have to be computed in the digital platform, opening new frontiers
for massively parallel architectures composed of PULP clusters coupled with in-
memory computing accelerators with much more flexibility than custom architectures.

To estimate the bandwidth consumed by a typical embedded inference application, we
used a MobileNet v2 network as benchmark. We estimated the bandwidth
consumption as being related to weight access; using 4-bit per weights, and targeting
full-throughput of 50 GOPS, the maximum bandwidth requirement is 768 Mb/s.
Assuming a PULP system featuring a 1.6 Gb/s Cypress HyperBUS [8] as external
interface, although wireless communication would not improve performance on this
specific use case, we could expect an energy improvement of around 5x when moving
from HyperBUS (110 pJ/bit) to THz wireless channels (assuming 1 pJ/bit). Beyond that,

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 18 January 28, 2021

it is important to note that the improvements of wireless connectivity do not stop at
increasing bandwidth or efficiency. In the in-memory computing case shown above,
the reconfigurable connectivity allows the accelerator to be able to adapt to a myriad
of different CNNs while minimizing overprovisioning of the network-in-package. We
aim to evaluate this non-trivial improvement achievable in this case later in the project.

3.2 Embedded CNN Training

Modern Deep Neural Networks (DNNs) have to be trained on clusters of GPUs and
millions of sample images to be competitive. Complex networks can take weeks to
converge during which the involved compute machinery consumes mega joules of
energy to perform the exa-scale amount of operations required. Inference, i.e.,
evaluating a network for a given input, provides many knobs for tuning and
optimization. Substantial research has been performed in this direction and many good
hardware accelerators have been proposed to improve inference speed and energy
efficiency [11]. The training of DNNs is much harder to do and many of these
optimizations do no longer apply. Stochastic Gradient Descent (SGD) is the standard
algorithm used to train such deep networks [12].

Figure 7. Data dependency graph of the forward pass (above) and backward pass (below).

Consider Figure 7 which shows the data dependencies when training a simple neural
network. While inference is concerned only with finding y, training aims at finding the
gradients (Du) which introduces a data dependency that requires us to temporarily
store the output xi; y of every layer. This also prevents optimizations such as fusing
activation or sub-sampling functions with the preceding layer, putting an extreme
pressure on the memory systems of architectures used for training. Moreover, while it
has been shown that inference is robust to lowering arithmetic precision [11], the
impact of fixed-point or reduced-precision floating-point (FP) arithmetic on training is
not yet fully understood, somehow limiting memory footprint minimization techniques
such as extreme quantization. Until additional light is shed on the topic, a training
accelerator must support 32 bit FP arithmetic to be able to compete with the ubiquitous
GPU.

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 19 January 28, 2021

In this scenario, while most traditional architectures for training of deep neural networks
belongs to the HPC domain, adaptation of DNNs to new tasks and functionalities in an
embedded domain is considered an open research problem. Techniques based on
one-shot and few-shot learning [13][14] tackle the problem by dividing the network in
a feature-extractor, which is trained entirely offline to derive a metric embedding of the
input, and a final stage clustering the various classes depending on their respective
distance. A more complete solution to the problem is that proposed by continual
learning [15][16] by modifying the loss and training algorithms in order to retrain a few
layers of the network for a new task without forgetting the previous ones. There is
significant interest in these technologies, particularly for the purpose of integration in
robotic devices, however several problems (e.g., significant memory footprint) have to
be solved before a full continual learning approach can be deployed on an embedded
device such as PULP, potentially leverage THz channels for communication with in-
package memories.

Another scenario where learning has to be integrated into the embedded devices is
training of in-memory computing elements, in order to reduce negative impact of
process variations between the in-memory computing cores used for DNN inference.
This heterogeneous integration between the in-memory computing cores and the
“high-precision” digital unit requiring floating-point support poses an extreme challenge
on the communication interface between these two subsystems, that can be solved
exploiting wireless THz channels developed in WiPLASH.

Figure 8. Mixed-precision computational memory architecture for deep learning.

To estimate the bandwidth consumed by an embedded learning application, we used
a MobileNet v2 network as benchmark. We estimated the bandwidth consumption as
being related to weight access in both directions (read for forward propagation, write
for backward propagation); using 32-bit per weight, and targeting full-throughput of 50
GOPS, the maximum bandwidth requirement is 12.3 Gb/s. The introduction in the
system of THz wireless channels for communication with external memory would
improve performance of the application by 7.6x over a system employing 1.6 Gb/s

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 20 January 28, 2021

HyperBUS interface [8], assuming a peak bandwidth of 100 Gb/s for THz wireless
channels. Moreover, assuming a transfer efficiency of 1 pJ/bit, THz wireless channels
would improve the energy efficiency of the application by more than one order of
magnitude.

3.3 Recommendation Systems

Personalized recommendation is the task of recommending new content to users
based on their preferences. In other words, deep learning-based recommendation
systems are used throughout industry to predict rankings for news feed posts and
entertainment content. Estimates show that up to 75% of movies watched on Netflix
and 60% of videos consumed on YouTube are based on suggestions from their
recommendation systems. Moreover, in 2018, McKinsey and Tech Emergence
estimated that recommendation systems were responsible for driving up to 35% of
Amazon’s revenue [17].

The main task of such services is the to accurately, and efficiently rank content based
on users’ preferences and previous interactions (e.g., clicks on social media posts,
ratings, purchases). Building highly accurate personalized recommendation system
poses unique challenges as user preferences and past interactions with content are
represented as both dense and sparse features. For instance, in the case of ranking
videos, there may be thousands of potential videos that have been seen by millions of
viewers. However, individual users interact with only a limited number of videos. This
means interactions between users and videos are sparse. Sparse features not only
make training more challenging but also require intrinsically different operations.

Figure 9. Simplified DLRM architecture.

Figure 9 shows a simplified architecture of state-of-the-art DNNs for personalized
recommendation models used at Facebook. This so-called Deep Learning
Recommendation Model (DLRM) consists of a variety of operations such as Fully

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 21 January 28, 2021

Connected (FC) layers, embedding, pooling, and non-linearities, such as ReLU. At a
high-level, dense and sparse input features are separately transformed using FC
layers and embedding tables respectively. The outputs of these transformations are
then combined and processed by a final set of FC layers. The inputs, for a single user
and single post, to recommendation models are a set of dense and sparse features.
The output is the predicted click-through-rate (CTR) of the user and post. Dense
features are first processed by a series of FC layers, shown as the Bottom-FCs in
Figure 9. On the other hand, sparse input features, represented as multiple vectors of
sparse IDs, must first be made dense. Although each vector of sparse feature can be
transformed to dense vectors using FC layers, its compute demands would be
significant. Therefore, embedding tables are used. Each vector is paired with an
embedding table, and each sparse ID is used to look-up a unique row in the embed-
ding table. The rows of the embedding are then combined into a single vector. Finally,
these vectors and the output of the Bottom-FC layers are concatenated, and processed
by the Top-FC layers.

A key distinguishing feature of DNNs for recommendation systems, compared to CNNs
and Recurrent Neural Networks (RNNs), is the use of embedding tables. Embedding
tables are used to transform sparse input features to dense ones. The dense
representations are subsequently processed by a series of more traditional layers
including, FC, pooling, and ReLU non-linearities.

Figure 10. Train loss vs test loss with default DLRM parameters.

DLRM is provided as open-source by Facebook implemented through PyTorch. This
implementation runs with default values for different parameters, such as shape of the
embedding, shape of the bottom and top MLP, activation functions, loss threshold,
number of workers, sparse feature size, etc. The training loss vs. the test loss is shown
in Figure 10 for the default parameters. For each specific application the optimal values
of these parameters can vary. As the first step of profiling this DLRM implementation,
we run it through different number of workers and batch sizes, while using Kaggle
dataset. As shown in Table 3, these two parameters affect training time and GPU
utilization.

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 22 January 28, 2021

Table 3. Training time, test loss, and GPU utilization with different number of workers and
batch sizes.

Batch Size Num. Workers Time (s) test_loss GPU Utilization (%)

512 0 7.53 0.4588 2.11

512 2 9.54 0.4589 2.89

512 8 9.87 0.4587 3.28

128 0 7.73 0.4568 4.2

128 2 8.57 0.4569 3.6

128 8 8.85 0.4566 2.9

32 0 7.29 0.4558 5.95

32 2 9.09 0.4556 4.22

32 8 9.33 0.4556 2.32

The most suitable architecture for this application seems to be Architecture #3, as this
application has HPC requirements. Even in this context, sustaining communication
requirements is a major challenge for state of the art (wired) interconnects. While such
requirements vary across implementation and deployments, depending on a number
of factors including batch size and architectural hyperparameters, they are consistently
very high. As examples, we measured a peak bandwidth exceeding 1GB/s in our
experiments targeting a Nvidia V100 GPUs, while Facebook indicates that, in their
setup, DLRM is only completely compute-bound if the available bandwidth exceeds
1TB/s.

In this case, it is clear that the wireless interconnect will hardly achieve the bandwidth
required to make this task completely computation-driven. In fact, it is of the architects’
best interest to explore how to best exploit the characteristics of the wireless
interconnect with its limited bandwidth. For instance, besides using the wireless
interconnect to accelerate the partial DNN runs, the low-latency broadcast can be used
to distribute and gather tasks from the workers or fetch values from a centralized
embedding table. However, as indicated previously, the complexity of HPC platforms
makes it difficult to make even rough estimations of the improvement achievable by
including wireless. For all these reasons, we defer the evaluation of potential speedups
to later in the project.

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 23 January 28, 2021

3.4 Federated Learning

As in standard DNNs, there are in the order of million parameters that define the model,
a large amount of data is required to adjust the parameters of these DNNs. In an
environment with distributed computation capabilities, Federated Learning (FL)
technique can enable several processors to take in charge part of the computation
locally to avoid having to send back sensible data to the cloud and can enable speedup
with limited accuracy degradation [18]. Figure 11 presents the general structure of a
FL architecture: several clients perform the training process on a reduced dataset and
send their updated weights values (W i) to a server. Then the server performs an
averaging operation and stream back the averaged weights values (W i+1) to all the
clients.

Figure 11. Structure of a Federated Learning architecture with n clients and one server.

While FL is usually considered as a way to maintain privacy in the context of medical
applications, in this project it can be considered in various ways:

 In an Edge-level environment (Architecture #1 or Architecture #2), the in-
memory computing accelerator and PULP cluster capabilities are leveraged to
accelerate the learning process and improve the energy efficiency of the clients.
In this case, the bandwidth and improvements are similar to those discussed in
previous sections.

 In an HPC environment (Architecture #3), a wireless-enabled MPSoC can
contain both the clients and the server in order to: (i) break down the bandwidth
limitations by reducing the dataset required by the clients, (ii) leverage the
reconfigurable point-to-point communication capability of the wireless
interconnect as which of the clients access different data, and (ii) leverage
steaming capabilities of wireless interconnect to perform the weight averaging
operation in a highly efficient manner. Such operations are very memory
demanding, given the huge number of parameters required by state of the art
CNNs (e.g.: 4.2M for MobilnetV1). Hence scaling this application to a high
number of clients is highly challenging from a communication bandwidth
perspective. Considering again MobilnetV1 (with 8-bit weight quantization) and
a 64-clients MPSoC, 336MB/s are required to execute a weight update
operation in 100 ms.

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 24 January 28, 2021

3.5 Graph Neural Networks

Even though these are important areas which have made them the focus of ANNs,
most of the crucial data that is being generated does not come with a regular structure.
Hence, in order to exploit the potential of Neural Networks in non-Euclidean data
structures such as graphs, Graph Neural Networks (GNN) were introduced in [22]. It is
interesting to note that GNNs were initially introduced as a generalization of the RNNs.
Further, some of the well-known examples for scenarios modeled with graphs are
traffic roads, computer networks, social media interactions, citation networks and
chemical molecules.

In a GNN, several neural network algorithms work over the graph structure, along its
edges and nodes, with the aim of extracting information in an edge-centered, node-
centered or graph-centered manner. That is, depending on the application, one can
choose to extract information from the nodes (e.g. whether a node belongs to a
shortest-path solution [23]), edges (e.g. delay a link will suffer in a computer network
[24]), or the complete graph (e.g. global properties of a molecule [25]). To do so,
several types of GNN variants have been proposed: Non-local neural networks (NLNN)
capture long-range dependencies of graphs by considering a weighted sum of all
nodes (in space and time) taking into consideration the most relevant items by using a
pairwise function. Related to them, Graph Attention Networks (GAT) leverage the
attention mechanism to concentrate the focus on specific subsets of the graph, which
make them worthy in variable input size applications. Relation Networks and Deep
Sets are useful to extract global features in graph-centric implementations by focusing
only on edge information and node information respectively. However, Message
Passing Neural Networks (MPNN), considered a generalization of several previous
works [25], are by far the most popular. An MPNN can be used to extract both node
and edge embeddings as well as graph embeddings, by applying a message passing
phase and a readout phase afterwards to the input graph. A particular class of MPNN
are the Graph Convolutional Networks (GCN). Notably though, the same GNN
operating principle, which consists of the propagation of a representation of nodes’
information along the edges until some defined convergence is achieved, is usually
shared. A generalization of the Graph Networks concept, as well as an exhaustive
literature review related to it can be found in [23].

Additionally, to highlight the significance of the impact that GNNs have had since their
conception, some of the most salient applications that we can find where GNNs have
been utilized are the recommender systems, network optimization, community
detection, pattern discovery, knowledge graphs, link prediction, properties prediction
of structures, etc. Furthermore, some of the most popular datasets that are being
utilized by the GNN community, and which will also be the candidates for our study,
are Cora, PubMed, Reddit, CiteSeer, PPI, NELL, MNIST, CIFAR-10 and ImageNet.

Given the significant popularity of MPNNs, which are a class of GNNs, in this section
we elaborate upon their operational characteristics. Specifically, the inference run is
composed by a T-step message passing stage and a readout stage. In the former, two
neural networks (message function and update function) work together to allow the
graph to dynamically interconnect and update its node and edge features. These NNs
are trained so that they extract relevant representations of the neighbor nodes or
edges, such as relative situation in the graph or implicit learnings that depend on the
application. Therefore, in each of the T time steps, two NN computations are needed
for each node. However, we will have extremely large weight sharing opportunities

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 25 January 28, 2021

since both NN will be the same in each node (weight tying). Note that, the magnitude
of T is a hyper-parameter that can be tweaked until obtaining a reasonable behaviour,
although it is highly linked with the Banach Fixed Point (BFP) theorem. Next, in the
readout phase, a third neural network gets as input the whole graph obtained in the
previous stage and outputs a low-dimension representation of it.

With this background, we now move onto exploring the problem of mapping a GNN in
a hardware platform. Multiple challenges exist, as compared to the mapping of
classical CNNs, for the case of GNNs.

Firstly, a CNN, which can be understood as a particular GNN example over a regularly
structured graph, enables a homogeneous dataflow to be deployed over the
architecture. This helps to design a fairly regular architecture, for instance via systolic
arrays. However, since GNNs work over irregular data, flexibility can be an asset to
reach CNN-like architecture performances. We foresee that having the mechanisms
provided by wireless interconnects, to heterogeneously and dynamically distribute
workloads over the processing elements, will allow to customize its inference while still
exploiting a general architecture.

Further, a GNN will be running typical neural networks such as CNN and RNN models,
scheduled in a specific manner to run iteratively over the features of the graph items.
To accomplish this task, a control plane will be needed to orchestrate the queued tasks
over the available PEs in order to obtain reasonable efficiencies by avoiding
unnecessary data movement. For instance, high affinity nodes in the graph may need
to exchange large amounts of data whereas lower affinity nodes may not, but this may
change dynamically over time. Here, by affinity nodes we mean a set of nodes that are
connected by multiple edges and share a strong relation. And so, for such scenarios,
a low-latency control plane alongside wireless interconnects can provide the necessary
flexibility. For instance, the aforesaid setup can broadcast setup codes from a look-up
table. This is similar to the flexible dataflow strategy followed in DNN accelerators like
MAERI [35], where the dataflow choice can be change in real-time, but with the
advantage of working in GNNs. A particular example of customized location of
heterogeneous computation in a GNN accelerator could be by means of different
precision/performance PEs. Subsequently, regions of the graph that require higher
computational resources could be sent to that part of the accelerator -where more
powerful cores are available- depending on the stage of the inference. This would allow
for a flexible performance-cost optimization-based strategy.

Additionally, a relevant strategy to follow when mapping GNNs into hardware is to
consider graph partitioning, inherited from classical graph theory. In fact, the extremely
limited number of works focusing on GNN execution on hardware are highlighting the
importance of graph tiling [36, 37]. However, the process of partitioning leads to varying
computational domains depending on the input graph and the result of the graph tiling.
Moreover, as a consequence, at some point different -- and potentially distant --
processing elements focusing on different tiles may be subject to share their partial
outputs due to the high degree of data reusability of these strategies. Specific
accelerators that solve these heterogeneous workload mappings are challenging to
design, and hence efficient wireless interconnects can potentially provide a convenient
solution.

In addition, as we previously stated, large amount of weight reusability is possible in
MPNN due to the nature of message and update functions. We foresee that these
parameters will be required in a large portion of the architecture cores after being

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 26 January 28, 2021

computed and stored in memory. Therefore, the distribution stage could be significantly
enhanced by leveraging wireless-enabled broadcast scheme.

Thus, targeting the high performance computing architecture, multiple chips will be
available in order to obtain a high computational throughput. Furthermore, in a wireless
architecture, the broadcast transmissions, which will be essential for GNNs, are
naturally provided by the transceivers without any extra cost as compared to the
unicast transmissions. All of these represent intuitive and yet reasonable opportunities
WiPLASH has, with regards to tackling the problem of GNN acceleration [36].

Given the relevance of operational characteristics and the target hardware
architectures, it is imperative to understand MPNN algorithm and its mathematical
structure, so as to be able to determine specific areas for optimization via wireless
networks. And so, the MPNN algorithm working over a graph G = (V,E), as defined in
[38], is as follows:

where the message function is:

in which ht
v denotes the feature vector of node v at time step t, evw denotes the feature

of the edge linking nodes v and w, and N(v) represent the neighbors of node v. Mt is
the Message function.

The update function is defined as:

where Ut is the Update function. A particular example [38] is:

where A and b are matrix and bias valued ANN, which do not depend on t. GRU
represents Gated Recurrent Unit. Therefore, their parameters can be broadcasted to
all PEs.

Depending on the message and update functions, the equations above can be
rewritten in a matrix form. For instance, the computing of a layer in a GCN with linear
message function can be expressed as X(t+1) = σ(A·X(t)·W(t)), where A is the adjacency

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 27 January 28, 2021

matrix, X(t) is the matrix containing feature vectors of all vertices at layer or time step t,
and W(t) is the weight matrix at later or time step t. The dimension of A depends on the
input graph, whereas the value of X and W, as well as the number of layers, depend
on the GNN architecture from input to hidden layers to output.

Figure 12. Representative set of graphs for different GNNs, from [36]

To illustrate the memory bandwidth requirements, let us take the Cora dataset from
Figure 12. Assuming a single layer and 8-bit precisions in all variables, the total data
to transfer the three matrices from main memory would be (2708 x 2708) for A, (2708
x 1433) for X, and (1433 x 7) for W. The sum equals to 10.7 MB. Larger matrices would
lead to larger transfers, whereas it is also worth noting that some techniques such as
graph sampling reduce the burden of loading the adjacency matrix.

In the Cora example, if we want an inference latency on the order of 10 ms, then the
required bandwidth is on the order of 1 GB/s. Assuming that the inference latency stays
fixed and that we do not use sampling, the requirements at larger graphs can easily
increase by orders of magnitude. Not surprisingly, works on GNN acceleration consider
HBM modules with bandwidths of 68 GB/s [41], 256 GB/s [36, 39], or 459 GB/s [40].

With the bandwidth figures shown above, it is unlikely that the wireless interconnect
will just blindly replace or complement wired networks to increase bandwidth. Instead,
with the background about the target architecture and structure of the GNNs now
established, we explore the various opportunities that exist in adapting to the new GNN
computational requirements as well as in optimizing its inference. Concretely, we
present two scenarios where the wireless infrastructure in an HPC can be utilized for
the purpose of GNN acceleration.

(i) Heterogeneous scheduling

At different time steps, different regions of our PE array could be working on different
regions of the graph, because of the iterative nature of the message passing algorithm
or because of different partitioning strategies. Alternatively, some of the PEs could
work on solving the message functions, while others can be utilized for the update
functions. In all of these cases, flexible scheduling is mandatory, and wireless
interconnects can enable either the control plane for it or the data management directly,
if bandwidth permits. Figure 13 shows a hypothetical scenario indicative of how the
aforementioned strategy can be realized. Concretely, at step “t”, we have 4 partitions
of our original graph that are being processed on 4 clusters of our HPC. However, as

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 28 January 28, 2021

the algorithm progresses, at step “t+1” the graph has only 3 partitions, wherein the
rightmost partition necessitates more resources than the other partitions. In such a
scenario, WiPLASH can potentially restructure the original scheduling and assign more
processor clusters to the task corresponding to processing the rightmost graph
partition.

Figure 13. Heterogeneous scheduling managed via wireless interconnects.

(ii) Weight broadcasting

We can leverage wireless broadcast capabilities to distribute message and update NN
learnt parameters in a few cycles to all PEs. InFigure 14, different portions of our PE
array are working on different nodes and edges, but the weights to be applied in each
of them can be broadcasted.

Figure 14. Weight broadcasting using wireless interconnects.

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 29 January 28, 2021

To summarize, for designing a complete GNN hardware platform, we can split the
computational work in two layers: an upper layer that orchestrates (partitions and
schedules) the in-graph workloads (graph-centric) and a bottom layer that runs and
splits the specific neural networks (NN-centric). Considering this approach, a baseline
can be obtained by taking estimates from classical DNN accelerators and determining
the extra consumption of the graph-level tasks. And so, reference [36], to the best of
our knowledge is the only work in literature that tackles directly the problem of GNN
acceleration on specific hardware architectures. Hence, given it is the state-of-the-art
strategy, we will utilize it as our baseline for comparison.

Evaluating the acceleration in a GNN is complex even in specialized hardware systems
because the optimal dataflow depends on the characteristics of the graph and of the
GNN layers. This, together with the non-trivial role of the wireless interconnect in
adapting the accelerator/HPC platform to the most optimal dataflow, complicates the
estimation of gains related to wireless technology. Therefore, we defer this task to
preliminary simulations later in the project.

3.6 Next Generation Sequencing

Genome sequencing is also one of the first steps in understanding a new disease, its
effects, development of diagnostic tests and possible cure and vaccines for it. This
process should be quite quick and efficient is case of a new disease outbreak, in order
to curtain it, as has been evident during the recent outbreak of the novel coronavirus
(COVID-19) [42].

Genome sequencing is the process of determining the DNA sequence or the order of
bases As, Cs, Gs, and Ts making up the organism's genome. Next-generation
sequencing (NGS) is a high-throughput genome sequencing method. In sequence
alignment, which is one of the first steps in NGS, a sequence read is aligned or
checked against a genomic reference for regions of similarity [43]. This process must
tolerate differences between the query read and the reference genome, due to errors
in the sequencing process and genuine differences between organisms.

There are several optimized sequence alignment NGS applications, including some of
the most widely used, relying upon the FM-index data structures and search
algorithms. Bowtie2 [44], BWA-MEM [45] and HISAT2 [46] are three of the most
important state-of-the-art widely used sequencing application that use FM-Index.

The FM-index is a data structure that allows fast substring searches over large texts
[47]. FM-index is based on several data structures and algorithms, such as Suffix Array
and Burrows-Wheeler Transform (BWT). A diagram of the flow of an FM-index search
is depicted in Figure 15.

The most suitable architecture for this application seems to be Architecture #3, as this
application has HPC requirements. Furthermore, this application performs a very large
numbers of random memory reads for performing the searches, so it requires a very
high memory bandwidth (to main memory, most likely, as the genome is quite large),
together with low latency. Indeed, our explorations of genomic sequencing algorithms
[48] highlighted that peak memory bandwidths of 17GB/s 10GB/s and 8 GB/s were
required by Bowtie2, BWA-MEM and HISAT2 (respectively) to outperform the state of
the art Intel KNL system when employing clusters of ARM processors. For these
reasons, improvement may not come by the sheer increase of bandwidth, but also from

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 30 January 28, 2021

architectures capable of coping with the irregular accesses to main memory. For this
reason, it is not trivial to infer the exact role of the wireless interconnect and its impact
on the performance and efficiency of genome sequencing in wireless-enabled HPC
architectures. For this, we will defer the assessment of potential to later in the project.

Figure 15. FM-index search

3.7 Real-Time Video Surveillance

The real-time video surveillance application proposes the use of an environment
consisting on the deployment of Ultra High definition cameras (edge devices) that
record video in 4K resolution combined with a H265 encoding that reduces the frame
size to almost the half than H264. The cameras, besides being the recording system,
are also part of the computing system that will perform image recognition inference
combining the computation capabilities of the edge devices (cameras in this case) with
edge data centers (DCs), when needed. Video transcoding and streaming represents
today 58% of the overall downstream traffic [49], whereas real-time video analytics
(powered by CNNs) are becoming one of the main “killer applications” for artificial
intelligence, with already a great impact in various domains of our daily life [50].

Real-time H265 video encoding is performed by means of the Kvazaar [51] real-time
video transcoder application, whereas image classification is performed with state-of-
the-art CNNs (such as Alexnet, MobileNet v1 and v2, and ResNet50) due to their
current relevance in edge devices.

Both encoding and classification are memory-intensive. Moreover, they have to abide
to real-time constraints. These characteristics put stringent requirements on the
interconnect, as typically video streams can be encoded at high frame rates (up to
24FPS) and resolutions (up to 640x480 pixels) for high-performance video analytics
scenarios such as drone navigation and autonomous driving applications. Indeed, for
the aforementioned settings, we measured a peak bandwidth of 16 GB/s.

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 31 January 28, 2021

4 Concluding Remarks

This deliverable identified applications workloads to be used in the project as case
studies. First, it introduced the hardware architectures that will be evaluated in the
project, belonging to three different domains: specialized in-memory computing-based
hardware accelerators, massively parallel multi-core scalable platforms, and more
traditional HPC systems. Second, it introduced and presented the target applications
for the project, together with key performance indicators related to the implementation
and optimization of the proposed applications to the target platforms. The quantitative
evaluations related to application mapping and optimization on the target WiPLASH
platforms will be provided in D4.3, but here we make some preliminary remarks.

We have chosen a set of benchmarks with the focus on DNNs, but showing a wide
range of characteristics that make them suitable for different architectures. Starting
with DNNs for embedded systems and specialized accelerators, to genome
sequencing or recommendation systems more suitable to HPC systems. The
bandwidth requirements vary widely, from a few tens of Mb/s in embedded DNN
inference to Tb/s ranges in DLRM or GNNs.

Taking into consideration that conservative assumptions lead to considering wireless
interconnects with a few tens of Gb/s bandwidth, and more aggressive ones pointing
to a few hundreds of Gb/s, then it is clear that the wireless interconnect will not simply
replace or augment the wired counterpart for reasons of bandwidth. Instead, the low
latency, system-level flexibility and inherent broadcast capabilities should be put in
action to enhance the architecture. In fact, the broadcast/multicast capability alone can
represent a boost of the effective impact of wireless as a single broadcast channel at
1 Gb/s just requires a transmission of 1 Gb/s regardless of the number of receivers. In
the wired case, on the contrary, addressing N cores at 1 Gb/s requires a much larger
bisection bandwidth because it requires the delivery of N packets. Further, in-memory
computing arrays can exploit the reconfigurability to implement adaptive accelerators
able to optimally map multiple CNNs without requiring overprovisioning at the
interconnect.

The potential gains in efficiency and performance of introducing wireless interconnects
depend on the application and architecture. On the one hand, the evaluation is
straightforward in the embedded DNN and the estimated gains can easily reach 10X
in efficiency (inference and training) and performance (in training only, because
inference does not require very high bandwidth). On the other hand, the architectural
considerations make it relatively difficult to evaluate the potential gains of including a
wireless interconnect in the rest of architectures. However, our previous experience in
wireless-enabled architectures [52] tells us that, depending on the application
characteristics and the architecture, improvements can reach 10X as well. In any case,
we defer the evaluation of HPC architectures to later in the project, when the simulator
will be available for architectural explorations, and rather focus the work on the DNN
acceleration initially. Later in the project, the other applications shall be explored
through batch simulations in a few selected HPC architectures that do not require fine-
tuning or mapping of the application on specialized hardware.

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 32 January 28, 2021

Bibliography

[1] A. Pullini, D. Rossi, I. Loi, G. Tagliavini and L. Benini, "Mr. Wolf: An Energy-
Precision Scalable Parallel Ultra Low Power SoC for IoT Edge Processing," in IEEE
Journal of Solid-State Circuits, vol. 54, no. 7, pp. 1970-1981, July 2019.

[2] RISC-V ISA Specifications, https://riscv.org/specifications

[3] M. Gautschi et al., "Near-Threshold RISC-V Core with DSP Extensions for Scalable
IoT Endpoint Devices," in IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 25, no. 10, pp. 2700-2713, Oct. 2017.

[4] F. Conti, P. D. Schiavone and L. Benini, "XNOR Neural Engine: A Hardware
Accelerator IP for 21.6-fJ/op Binary Neural Network Inference," in IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 11, pp.
2940-2951, Nov. 2018.

[5] Y. M. Qureshi, W. A. Simon, M. Zapater, D. Atienza and K. Olcoz, "Gem5-X: A
Gem5-Based System Level Simulation Framework to Optimize Many-Core
Platforms," 2019 Spring Simulation Conference (SpringSim), Tucson, AZ, USA,
2019, pp. 1-12.

[6] A Sridhar, A Vincenzi, D Atienza, T Brunschwiler, 3D-ICE: a compact thermal model
for early-stage design of liquid-cooled ICs, IEEE Transactions on Computers, Vol 63,
No. 10, October 2014.

[7] D. Rossi et al., "Application Space Exploration of a Heterogeneous Run-Time
Configurable Digital Signal Processor," in IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 21, no. 2, pp. 193-205, Feb. 2013.

[8] Cypress Semiconductors HyperRAM:

https://www.cypress.com/products/hyperram-memory

[9] APMEM IoT RAM Products: http://www.apmemory.com/html/product_psram.php

[10] GAP-8: IoT processor:

https://greenwaves-technologies.com/ai_processor_gap8/product-brief-form/

[11] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of deep neural
networks: A tutorial and survey,” Proc. IEEE, vol. 105, no. 12, pp. 2295–2329, 2017.

[12] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA, USA:
MIT Press, 2016, [Online]. Available: http://www.deeplearningbook.org

[13] Li Fei-Fei, R. Fergus and P. Perona, "One-shot learning of object categories," in
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp.
594-611, April 2006.

[14] J. Snell, K. Swersky, and R.S. Zemel, “Prototypical Networks for Few-shot
Learning”, ArXiv170305175 Cs Stat, 2017.

[15] T. Lesort, et al. “Continual Learning for Robotics”. ArXiv190700182 Cs, 2019.

[16] D. Maltoni, and V. Lomonaco, “Continuous learning in single-incremental-task
scenarios” Neural Netw, Vol. 116, no. 56–73, 2019.

[17] U. Gupta, X. Wang, M. Naumov, C.-J. Wu, B. Reagen, D. Brooks, B. Cottel et al.
"The architectural implications of Facebook's DNN-based personalized
recommendation." arXiv preprint arXiv:1906.03109, 2019.

[18] K. Chen and Q. Huo, "Scalable Training of Deep Learning Machines by
Incremental Block Training with Intra-block Parallel Optimization and Blockwise
Model-Update Filtering," IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), 2016.

https://www.cypress.com/products/hyperram-memory
http://www.apmemory.com/html/product_psram.php
https://greenwaves-technologies.com/ai_processor_gap8/product-brief-form/
http://www.deeplearningbook.org/

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 33 January 28, 2021

[19] S. Liu and W. Deng, "Very deep convolutional neural network based image
classification using small training sample size," 2015 3rd IAPR Asian Conference on
Pattern Recognition (ACPR), Kuala Lumpur, 2015, pp. 730-734.

[20] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: Object detection via region-based fully
convolutional networks,” in Proceedings of the NIPS, 2016.

[21] A. Toshev et al., “Deeppose: Human pose estimation via deep neural networks,”
in CVPR, 2014.

[22] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner and G. Monfardini, "The Graph
Neural Network Model," in IEEE Transactions on Neural Networks, vol. 20, no. 1, pp.
61-80, Jan. 2009.

[23] P. W. Battaglia et al., “Relational inductive biases, deep learning, and graph
networks,” 2018.

[24] K. Rusek, et al. “Unveiling the Potential of Graph Neural Networks for Network
Modeling and Optimization in SDN.” Proceedings of the 2019 ACM Symposium on
SDN Research, 2019.

[25] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural
Message Passing for Quantum Chemistry,” in Proceedings of the ICML ’17, 2017,
pp. 1263–1272.

[26] A. K. McCallum, “Automating the construction of internet portals with machine
learning.” Information Retrieval. 3. 127-163, 2000.

[27] C. Giles, K. Bollacker, and S. Lawrence, Steve, “CiteSeer: An Automatic Citation
Indexing System,” Proceedings of 3rd ACM Conference on Digital Libraries, 2000.
10.1145/276675.276685.

[28] H. Dai, Z. Kozareva, B. Dai, A. Smola, L. Song; "Learning Steady-States of
Iterative Algorithms over Graphs"; Proceedings of the 35th International Conference
on Machine Learning, PMLR 80:1106-1114, 2018.

[29] J. Baumgartner, S. Zannettou, B. Keegan, M. Squire, J. Blackburn, The Pushshift
Reddit Dataset. Zenodo. 2020. http://doi.org/10.5281/zenodo.3608135

[30] M. Zitnik and J. Leskovec, “Predicting multicellular function through multi-layer
tissue networks,” Bioinformatics, vol. 33, no. 14, pp. i190– i198, 2017.

[31] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka, and T. M. Mitchell.
2010. Toward an architecture for never-ending language learning. In Proceedings of
the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI’10). AAAI Press,
1306–1313.

[32] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied
to document recognition." Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324,
November 1998.

[33] A. Krizhevsky. “Learning multiple layers of features from tiny images.” Tech
Report, 2009.

[34] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.
Karpathy, A. Khosla, M. Bernstein, A. C. Berg and L. Fei-Fei. “ImageNet Large Scale
Visual Recognition Challenge.” International Journal of Computer Vision, 2015.

[35] H. Kwon, A. Samajdar, and T. Krishna, “MAERI: Enabling Flexible Dataflow
Mapping over DNN Accelerators via Reconfigurable Interconnects,” in Proceedings
of the ASPLOS ’18, 2018, pp. 461–475.

[36] S. Liang, et al. “EnGN: A High-Throughput and Energy-Efficient Accelerator for
Large Graph Neural Networks”, IEEE Transactions on Computers, 2020.

WiPLASH D4.1 H2020-FETOPEN-863337

www.wiplash.eu 34 January 28, 2021

[37] L. Ma et al., “Neugraph: Parallel deep neural network computation on large
graphs,” Proc. 2019 USENIX Annu. Tech. Conf. USENIX ATC 2019, pp. 443–457,
2019.

[38] K. Rusek and P. Chołda, “Message-Passing Neural Networks Learn Little’s Law,”
IEEE Commun. Lett., vol. 23, no. 2, pp. 274–277, 2018.

[39] M. Yan et al., “HyGCN: A GCN Accelerator with Hybrid Architecture,” in
Proceedings of the HPCA ’20, 2020.

[40] T. Geng et al., “AWB-GCN: Accelerating Graph Convolutional Networks through
Runtime Workload Rebalancing,” in Proceedings of MICRO-53, 2020.

[41] A. Auten, M. Tomei, and R. Kumar, “Hardware Acceleration of Graph Neural
Networks,” in Proceedings of the DAC ’20, 2020.

[42] “Whole genome of the Wuhan coronavirus, 2019-nCoV, sequenced,” 2020.
[Online]. Available: www.sciencedaily.com/releases/2020/01/200131114748.htm

[43] H. Li and N. Homer, “A survey of sequence alignment algorithms for next-
generation sequencing,” Brief Bioinform., pp. 473–483, May 2010.

[44] B. Langmead and S. L. Salzberg, “Fast gapped-read alignment with bowtie 2,”
Nature Methods, pp. 357–359, Mar 2012.

[45] H. Li and R. Durbin, “Fast and accurate short read alignment with burrows-wheeler
transform,” Bioinformatics, vol. 25, no. 14, pp. 1754–1760, May 2009.

[46] D.Kim, J.M.Paggi, C.Park, C.Bennett, and S.L. Salzberg,“Graph-based genome
alignment and genotyping with HISAT2 and HISAT genotype,” Nature Biotechnology,
vol. 37, no. 8, pp. 907–915, Aug. 2019.

[47] P. Ferragina and G. Manzini, “Opportunistic data structures with applications,” in
Proceedings 41st Annual Symposium on Foundations of Computer Science, 2000,
pp. 390–398.

[48] Y. M. Qureshi et al., "Genome Sequence Alignment - Design Space Exploration
for Optimal Performance and Energy Architectures," in IEEE Transactions on
Computers, 2020.

[49] Sandvine 2018. “Global Internet Phenomena Report. 2018”. URL:
https://www.sandvine.com/hubfs/downloads/phenomena/2018-phenomena-
report.pdf

[50] G. Ananthanarayanan, P. Bahl, P. Bodík, K. Chintalapudi, M. Philipose, L.
Ravindranath, and S. Sinha. 2017. “Real-Time Video Analytics: The Killer App for
Edge Computing”. Computer, pp. 58–67.

[51] M. Viitanen, A. Koivula, A. Lemmetti, A. Ylä-Outinen, J. Vanne, and T. D.
Hämäläinen. 2016. “Kvazaar: Open-Source HEVC/H. 265 Encoder”. In Multimedia
Conference, pp. 1179–1182.

[52] V. Fernando, A. Franques, S. Abadal, S. Misailovic, J. Torrellas, “Replica: A
Wireless Manycore for Communication-Intensive and Approximate Data,” in
Proceedings of the ASPLOS ’19, Providence, RI, USA, April 2019.

http://www.sciencedaily.com/releases/2020/01/200131114748.htm
https://www.sandvine.com/hubfs/downloads/phenomena/2018-phenomena-report.pdf
https://www.sandvine.com/hubfs/downloads/phenomena/2018-phenomena-report.pdf

